M.Sc. Mathematics

Course Structure and Syllabus
(Based on Choice Based Credit System)
2018 onwards

DEPARTMENT OF MATHEMATICAL SCIENCES

VISION

To be a knowledge nerve center in Mathematics, Pure and Applied Research and industry requirements for creating sustainable infrastructure and enhancing quality of life

MISSION

- To offer globally-relevant, industry-linked, research-focused, technology-enabled seamless
 education at the graduate, postgraduate and research levels in various areas of
 Mathematical sciences keeping in mind that the manpower so spawned is excellent in
 quality, is relevant to the global scientific and technological needs, is motivated to give
 its best and is committed to the growth of the Nation;
- 2. To develop and conduct continuing education programs for Science graduates with a view to update their fundamental knowledge base and problem-solving capabilities in the various areas of core specialization of the University;
- 3. To develop comprehensive linkages with premier academic and research institutions within the country and abroad for mutual benefit.

M.Sc. (Mathematics) Program

The main objective of this program is to cultivate a mathematical aptitude and nurture the interests of the students towards problem solving aptitude. Further, it aims at motivating the young minds for research in mathematical sciences and to train computational scientists who can work on real life challenging problems.

Duration: M.Sc. Mathematics is a postgraduate level program offered by the Department of Mathematical Sciences. This is a 2-years program, consisting of four semesters with two semesters per year.

Program Code: MSM (Masters of Science in Mathematics)

Eligibility: B.A./B.Sc. or equivalent from a recognized university with Mathematics as one of the major subjects with at least 50% marks in aggregate.

PROGRAM OBJECTIVES: The Program Objectives are the knowledge skills and attributes which the students have at the time of post-graduation. At the end of the program, the student will be able to:

1	To provide comprehensive curriculum to groom the students into qualitative scientific manpower
2	Enable students to enhance mathematical skills and understand the fundamental concepts of pure and applied mathematics.
3	To provide qualitative education through effective teaching learning processes by introducing projects, participative learning and latest software tools.
4	To inculcate innovative skills, team work, ethical practices among students so as to meet societal expectations.
5	To encourage collaborative learning and application of mathematics to real life situations.
6	To inculcate the curiosity for mathematics in students and to prepare them for future research.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Apply the knowledge of mathematical concepts in interdisciplinary fields.
PSO2	Understand the nature of abstract mathematics and explore the concepts in further
	details.
PSO3	Model the real-world problems in to mathematical equations and draw the inferences
	by finding appropriate solutions.
PSO4	Identify challenging problems in mathematics and find appropriate solutions.
PSO5	Pursue research in challenging areas of pure/applied mathematics.
PSO6	Employ confidently the knowledge of mathematical software and tools for treating
	the complex mathematical problems and scientific investigations.
PSO7	Continue to acquire mathematical knowledge and skills appropriate to professional
	activities and demonstrate highest standards of ethical issues in mathematics.
PSO8	Comprehend and write effective reports and design documentation related to
	mathematical research and literature, make effective presentations.
PSO9	Qualify national level tests like NET/GATE etc.
PSO10	Effectively communicate and explore ideas of mathematics for propagation of
	knowledge and popularization of mathematics in society.

Scheme of the Program:

First Semester Contact Hours: 28 Hrs.

Course Code	Course Title		Load Allocation		Mark	s Distribu	tion	Credits
		L	Т	P	Internal	External	Total	
MSM101-18	Algebra-I	4	1	0	30	70	100	4
MSM102-18	Real Analysis-I	4	1	0	30	70	100	4
MSM103-18	Complex Analysis	4	1	0	30	70	100	4
MSM104-18	Ordinary Differential Equations and Special Functions	4	1	0	30	70	100	4
MSM105-18	Mathematical Methods	4	1	0	30	70	100	4
MSM106-18	Introduction to Computer Algebra System (Lab)	0	0	3	50	25	75	3
То	otal	20	05	03	200	375	575	23

Course Code	Course Title	Load Allocation			Mark	s Distribu	tion	Credits
		L	Т	P	Internal	External	Total	
MSM201-18	Algebra-II	4	1	0	30	70	100	4
MSM202-18	Real Analysis-II	4	1	0	30	70	100	4
MSM203-18	Mechanics-I	4	1	0	30	70	100	4
MSM204-18	Partial Differential Equations	4	1	0	30	70	100	4
MSM205-18	Numerical Analysis	4	1	0	30	70	100	4
MSM206-18	Numerical Analysis (Lab)	0	0	3	50	25	75	3
7	Total		05	03	200	375	575	23

Third Semester Contact Hours: 27 Hrs.

Course Code	Course Title	Load	Alloca	ation	Marks	Distributi	on	Credits
		L	T	P	Internal	External	Total	
MSM301-18	Topology	4	1	0	30	70	100	4
MSM302-18	Number Theory and Cryptography	4	1	0	30	70	100	4
MSM303-18	Mathematical Statistics	4	1	0	30	70	100	4
MSM304-18	Functional Analysis	4	1	0	30	70	100	4
MSM305-18	Mechanics-II	4	1	0	30	70	100	4
MSM306-18	Number Theory and Cryptography (Lab)	0	0	2	33	17	50	2
	Total	20	05	02	183	367	550	22

Fourth Semester Contact Hours: 35 Hrs.

Course Code	Course Title	Load Allocation			Mark	s Distribu	tion	Credits
		L	Т	P	Internal	External	Total	
MSM401-18	Differential Geometry	4	1	0	30	70	100	4
MSMWWW- 18	Elective	4	1	0	30	70	100	4
MSMXXX- 18	Elective	4	1	0	30	70	100	4
MSMYYY- 18	Elective	4	1	0	30	70	100	4
MSMZZZ-18	Elective	4	1	0	30	70	100	4
MSM601-18	Dissertation	0	0	12	200	100	300	12
Т	Total			10	350	450	800	32

TOTAL NUMBER OF CREDITS = 100

LIST OF DEPARTMENTAL/INTERDISCIPLINARY ELECTIVES

Elective- MSMWWW-18, MSMXXX-18, MSMYYY-18, MSMZZZ-18 (Any one subject to be opted)

MSM501-18 Discrete Mathematics

MSM502-18 Coding Theory

MSM503-18 Operations Research

MSM504-18 Advanced Number Theory

MSM505-18 Advanced Complex Analysis

MSM506-18 Advanced Operations Research

MSM507-18 Advanced Fluid Mechanics

MSM508-18 Advanced Solid Mechanics

MSM509-18 Theory of Linear Operators

MSM510-18 Advanced Numerical Methods

MSM511-18 Topological Vector Spaces

MSM512-18 Fractional Calculus

Examination and Evaluation

Theory	,		
S. No.	Evaluation criteria	Weightage in Marks	Remarks
1	Mid term/sessional Tests	20	Internal evaluation (20 Marks)
2	Attendance/ Assignments/seminars	10	MSTs, Quizzes, assignments, attendance, etc. constitute internal evaluation. Average of two mid semester test will be considered for evaluation.
4	End semester examination	70	External evaluation (70 Marks) Conduct and checking of the answer sheets will at the Department level in case of University teaching Department or Autonomous institutions. For other colleges examination will be conducted at the University level.
5	Total	100	Marks may be rounded off to nearest integer.
Practic (LAB)	als: Introduction to Computer Alge	bra System (L	Lab) and Numerical Analysis
1	Daily evaluation of practical record/Viva Voice	25	Internal evaluation (50 Marks)
2	Attendance	10	
3	Seminar/Presentation	15	
4	Final Practical Performance + Viva Voice	25	External evaluation (25 Marks)
5	Total	75	Marks may be rounded off to nearest integer.

Practi	cals: Number Theory and Cryptograp	hy (LAB)	
1	Daily evaluation of practical record/Viva Voice	17	Internal evaluation (33 Marks)
2	Attendance	10	
3	Seminar/Presentation	06	
4	Final Practical Performance + Viva Voice	17	External evaluation (25 Marks)
5	Total	50	Marks may be rounded off to nearest integer.

			Diss	ertation		
]	internal Ass	sessment		
	Communica presenta		Re	sponse to queries	Maximum Marks	Evaluated by
Departmental Presentation	20		30	50	Committee Member: 1.Head 2.Supervisor 3.One of Faculty Member	
Dissertation	Plagiarism 25	Subject Matter	Usage of Language	Publication/Presentation in Conference	150	
	23					
		Ex	ternal Asse	ssment		
				Committee Member: 1.Head		
External Examiner					50	2.External Expert
				3.Supervisor 4. Director (MC) nominee		
Viva Voce	Communi and Preser		Re	sponse to queries	50	
	20			30		
		To	tal		300	

Evaluation Process:

- 1. The subject matter evaluation can further be defined on the basis of Title, Review of literature/Motivation, Objectives, Methodology, Results and discussions, and Conclusion.
- 2. The usage of language and the subject matter shall be evaluated by the supervisor. Out of 300 marks, 95 marks are to be evaluated by the concerned supervisor.
- 3. Total 15% Plagiarism is admissible for submission of the dissertation. For (0-5)% of plagiarism, candidate should be awarded 25 marks. For >5%-10% candidate should be awarded 15 marks and for the range of >10% to <15%, candidate should be awarded 5 marks.
- 4. For publication candidate should be awarded full 30 marks and for presenting the work related to dissertation, candidate should be awarded 25 marks.

MSM10	1-18		Alg	gebra-I]	L-4, T-1,	P-0	4 Cre	dits		
Pre-requ	isite: Dis	screte Str	uctures									
mathemat explore: f The course mathemat	ics cours oundationse also f	ses. The f ons of Alg Fulfills th	undamen gebraic st e objecti	tals of algructures, ve to ma	gebraic p Groups,	roblem-se Rings, Id	olving are leals, Fiel	e explain lds, Hom	ed. Stude omorphi	ents will sms etc.		
Course C	outcomes	s: At the	end of the	e course,	the stude	nts will b	e able to					
CO1		Apply the knowledge of Algebra to attain a good mathematical maturity and enables to build mathematical thinking and skill.										
CO2	Utiliz	ze the cla	ss equation	on and Sy	low theo	rems to s	olve diffe	erent rela	ted probl	lems.		
CO3	Simp	Identify and analyze different types of algebraic structures such as Solvable groups, Simple groups, Alternate groups to understand and use the fundamental results in Algebra.										
CO4	betwo	Design, analyze and implement the concepts of homomorphism and isomorphism between groups and rings for solving different types of problems, for example, Isomorphism theorems, quotient groups, conjugacy etc.										
CO5		te, select an groups							nitely ge	enerated		
CO6	Ident	ify the chions.	allenging	g problen	ns in mod	lern math	nematics	and find	their app	ropriate		
	,	Mapping	g of cour	se outco	mes with	the prog	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	V	V	-	√	V	-	√	-	√	√		
CO2	1	√	-	√ √	-	-	√	-	√	V		
CO3	V	V	-	V	V	-	V	-	V	V		
CO4	V	V	-	1	V	-	1	-	V			
CO5	V	1	-	V	-	-	V	-	V	V		
CO6	1	1	-	V	-	-	V	-	V	V		

Course Title: Algebra-I Course Code: MSM101-18

UNIT-I

Groups: Groups, homomorphisms, Subgroups and Cosets, Cyclic groups, Permutation groups, Normal subgroups and quotient groups, Isomorphism theorems, Automorphisms, Symmetric groups, Conjugacy. [Ref 2: Unit 1]

UNIT-II

Normal series, Derived Series, Composition Series, Solvable Groups, Simple groups and their examples, Alternating group A_n , Simplicity of A_n . [Ref 2: Unit 1]

UNIT-III

Direct Products, Finite Abelian Groups, Fundamental Theorem on Finitely generated Abelian Groups, Invariants of a finite abelian groups, Sylow's Theorems and their applications, Groups of order p^2 , pq. [Ref 2: Unit 1]

UNIT-IV

Rings: Ring, Subring, Ideals, Homomorphism and Algebra of Ideals, Maximal and prime ideals, Ideals in quotient rings, Nilpotent and nil ideals. [Ref 2: Unit 2]

- 1. Bhattacharya, P. B., Jain, S.K. and Nagpaul, S.R., *Basic Abstract Algebra*, 2nd *Edition*. U.K.: Cambridge University Press, 2004.
- 2. Dummit, David. S., and Foote, Richard M., *Abstract Algebra*, 3rd Edition. New Delhi: Wiley, 2011.
- 3. Herstein, I.N., *Topics in Algebra*, 2nd Edition. New Delhi: Wiley, 2006.
- 4. Singh, Surjeet, and Zameeruddin, Q., *Modern Algebra*, 7th Edition. New Delhi: Vikas Publishing House, 1993.
- 5. Artin, M., *Algebra*, 2nd Edition. Pearson Publications, 2010.

MSM102	2-18		Real A	Analysis-	Ι	I	L-4, T-1,	P-0	4 Cre	dits		
Pre-requi	site: Ba	osic Calcu	ılııs									
_										11 0		
fundament as well as on theoreti logics and	tal conce function ical four	epts viz. and the dation of	metric specific e Rieman the above	aces, con n-Stieltje	ntinuous f es integra	functions l etc. The	, sequence e main fo	es and secus of th	eries of r is course	numbers will be		
Course O	utcomes	s: At the	end of the	e course,	the stude	nts will b	e able to					
CO1	Apply the knowledge of concepts of real analysis in order to study theoretical development of different mathematical techniques and their applications.											
CO2		Understand the nature of abstract mathematics and explore the concepts in further details.										
CO3		Identify challenging problems in real variable theory and find their appropriate solutions.										
CO4		with axi				_	_		the cond	cepts of		
CO5		theory of rent fields			_		ving def	inite inte	grals ar	ising in		
CO6		nd their k oing into	_		variable t	heory for	r further	exploration	on of the	subject		
	.	Mapping	g of cour	se outco	mes with	the prog	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	V	-	-	-	-	-	V	-	V	V		
CO2	-	V	-	-	-	-	V	-	√	V		
CO3	-	-	-	V	-	-	V	-	V	V		
CO4	-	V	-	-	-	-	V	-	V	V		
CO5	V	-	-	-	-	-	√	-	V	V		
CO6	-	-	-	-	1	-	V	-	V	V		

Course Title: Real Analysis-I Course Code: MSM102-18

UNIT-I

Finite, Countable and Uncountable sets, Metric spaces, Compact sets, Perfect sets, Connected sets, Convergent sequences, Sub sequences, Cauchy sequences, Power series, Absolute convergence, Algebra of series, Rearrangements of elements in a series.

UNIT-II

Limits of functions, Continuous functions, Compactness, Connectedness, Monotonic functions, Infinite limits and Limits at infinity.

UNIT-III

The Riemann-Stieltjes integral: Definition and existence of the Riemann-Stieltjes integral, Properties of the integral, Integration and differentiation, Integration of vector-valued functions, Rectifiable curves.

UNIT-IV

Sequences and series of functions: Interchanging order of limits for sequences of functions, Uniform convergence, Uniform convergence and continuity, Uniform convergence and integration, Uniform convergence and differentiation, Equicontinuous families of functions, Stone Weierstrass Theorem.

- 1. Rudin, W., *Principles of Mathematical Analysis*, 3rd Edition. New Delhi: McGraw-Hill Inc., 2013.
- 2. Royden, H.L. and Fitzpatrick, P.M., Real Analysis, 4th Edition. New Delhi: Pearson, 2010.
- 3. Carothers, N. L., Real Analysis, Cambridge University Press, 2000.
- 4. Apostol, T.M., *Mathematical Analysis –A modern approach to Advanced Calculus*. New Delhi: Narosa Publishing House, 1957.
- 5. Abbott, S., *Understanding Analysis*, 2nd Edition. Springer, 2016.

MSM10	3-18		Comple	ex Analy	sis	I	L-4, T-1,	P-0	4 Cree	dits		
Pre-requ	isite: Cal	lculus of	several v	ariables a	ind comp	lex numb	er systen	1.				
Course Coof the fur	-		_					_		_		
relations		_		_	-		-		-			
fundamen	ital conce	epts of co	mplex va	riable the	eory. In p	articular,	to enabl	e student	s to acqu	ire skill		
of contou	r integrat	ion to ev	aluate co	mplicated	l real inte	grals via	residue o	calculus.				
Course C	Outcomes	s: At the	end of the	e course,	the stude	nts will b	e able to					
CO1	Knov	Know the fundamental concepts of complex analysis.										
CO2	Evalu	Evaluate complex integrals and apply Cauchy integral theorem and formula.										
CO3		Evaluate limits and checking the continuity of complex function & apply the concept of analyticity and the Cauchy-Riemann equations.										
CO4		Solve the problems using complex analysis techniques applied to different situations in engineering and other mathematical contexts.										
CO5				for math om compl			g througl	n analysi	ng, prov	ing and		
CO6	Exter	nd their k	nowledge	e to pursu	ie researc	h in this	field.					
	I	Mappin	g of cour	se outco	mes with	the prog	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	V	V	-	-	1	-	√	-	V	V		
CO2	√	V	-	√	V	-	V	-	V	V		
CO3	√	V	-	√	√	-	√	-	V	V		
CO4	V	V	V	√	V	-	V	-	V	V		
CO5	V	V	V	√	√	-	V	-	V	V		
CO6	V	V	√	V	V	-	V	-	V	V		
	<u>l</u>	I	1	<u> </u>	<u> </u>	<u>l</u>	<u>l</u>	<u>l</u>	1	1		

Course Title: Complex Analysis

Course Code: MSM103-18

UNIT-I

Function of complex variable, continuity and differentiability, Analytic functions, Cauchy Riemann equation (Cartesian and polar form). Harmonic functions, Harmonic conjugate, Construction of analytic functions. Exponential function, Trigonometric and inverse trigonometric functions, Logarithmic function, Complex powers, Branches of multivalued functions with reference to arg(z), $\log(z)$, z^c . Stereographic projection and the spherical representation of the extended complex plane.

Unit-II

Complex line integral, Cauchy-Goursat theorem, independence of path; Cauchy's integral formulas and their consequences, Cauchy inequality, Liouville's theorem, Fundamental theorem of algebra, Morera's theorem, Maximum modulus principle, Schwarz lemma, Poisson's integral formula.

Unit-III

Power series: circle of convergence, radius of convergence. Taylor's series and Taylor's theorem, Laurent'z series and Laurent theorem, Zeros and singularities of complex functions, classification of singularities: removable singularity, poles, essential singularities, Residue at a pole and at infinity, Cauchy's Residue theorem and its applications in evaluation of real integrals: integration around unit circle, integration over semi-circular contours (with and without real poles), integration around rectangular contours, Argument principle, Rouche's theorem

Unit-IV

Conformal transformations, Bilinear transformations, Critical points, Fixed points, Problems on cross-ratio and bilinear transformation.

- 1. Ahlfors, L.V., *Complex Analysis*, 2nd *Edition*. McGraw-Hill International Student Edition, 1990
- 2. Kumar, R.R., Complex Analysis, Pearson Education, 2015.
- 3. Churchill, R. and Brown, J.W., *Complex Variables and Applications*, 6th *Edition*. New-York: McGraw-Hill, 1996.

MSM104	-18	Ordinary Differential Equations and Special Functions L-4, T-1, P-0 4 Credits										
Pre-requis	site: Di	fferential				and son	ne introdu	ction to l	inear alg	ebra.		
Course Obtained fundament techniques various fie	al theor	rems for nputing the	existence he soluti	e and uni	iqueness.	This co	ourse furtl	ner expla	ains the	analytic		
Course Ou	ıtcome	s: At the	end of the	e course,	the stude	nts will	be able to					
CO1		erstand or amental c					various ty	pes, thei	r solutio	ns, and		
CO2	Unde	erstand the	e concept	and app	lications	of eigen	value prol	blems.				
CO3	Unde	Understand differential equations of Strum Liouville type.										
CO4		Apply various power series methods to obtain series solutions of differential equations.										
CO5	Disci	uss variou	s kinds c	of special	functions	in detai	il, their pro	operties a	and relati	ons.		
CO6	Solve	e problem	s of ordi	nary diffe	erential ed	quations	arising in	various	fields.			
		Mapping	g of cour	se outco	mes with	the pro	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	V	-	V	V	√	-	V	-	V	V		
CO2	V	-	V	V	√	-	√	-	V	V		
CO3	V	-	$\sqrt{}$	√	V	-	√	-	V	V		
CO4	V	-	$\sqrt{}$	√	√	-	√	-	V	V		
CO5	V	-	V	√	1	-	√	-	V	V		
CO6	V	-	V	√	√	-	√	-	V	V		

Course Title: Ordinary Differential Equations and Special Functions

Course Code: MSM104-18

UNIT-I

Review of linear differential equations with constant & variable coefficients, Fundamental existence and uniqueness theorem for system and higher order equations (Picard's and Piano theorems), System of linear differential equations, an operator method for linear system with constant coefficients, Phase plane method.

UNIT-II

Homogeneous linear system with constant coefficients, Eigenvalues and eigen functions, orthogonality of eigen functions, Complex eigenvalues, repeated eigenvalues, Ordinary differential equations of the Sturm-Liouville problems, Expansion theorem, Extrema properties of the eigen values of linear differential operators, Formulation of the eigen value problem of a differential operator as a problem of integral equation, Linear homogeneous boundary value problems

UNIT-III

Power series solution of differential equations: about an ordinary point, solution about regular singular points, the method of Frobenius, Bessel equation and Bessel functions, Recurrence relations and orthogonal properties., Series expansion of Bessel Coefficients, Integral expression, Integral involving Bessel functions, Modified Bessel function, Ber and Bei functions, Asymptotic expansion of Bessel Functions, Legendre's differential equations, Legendre Polynomials, Rodrigue's formula, Recurrence relations and orthogonal properties.

UNIT-IV

The Hermite polynomials, Chebyshev's polynomial, Laugrre's polynomial: Recurrence relations, generating functions and orthogonal properties.

- 1. Ross, S.L., *Differential Equations*, 3rd Edition. John Wiley & Sons, 2004.
- 2. Boyce, W.E. and Diprima, R.C., *Elementary Differential Equations and Boundary Value problems*, 4th Edition. John Wiley and Sons, 1986.
- 3. Sneddon, I.N., *Special Functions of Mathematical Physics and Chemistry*. Edinburg: Oliver & Boyd, 1956.
- 4. Bell, W.W., Special Functions for Scientists and Engineers. Dover, 1986.

MSM10	5-18	N	Iathema	tical Met	thods]	L -4, T-1,	P-0	4 Cree	dits			
Pre-requi	isite: Bas	sic Calcu	lus and L	inear Alg	gebra								
C	1 4	Tl1	.:	£ 41			1	-4	l 1	- 1 C			
Course O mathemat													
one of the													
required f	-			_	_	tudents v	vitin the i	nathemat	icui ouci	rground			
_													
Course O	utcomes	s: At the	end of the	e course,	the stude	nts will b	e able to						
CO1	Unde	erstand the	e theory a	and applie	cations of	f integral	transform	ns.					
CO2									- C 1:C	2 42 - 1			
CO2	equat	ain how	ıntegral	transforn	ns can b	e used 1	to solve	a variety	y or aiff	erential			
	1	•											
CO3	Solve	Solve integro-differential equations of Fredholm and Volterra type.											
CO4	Unde	Understand the properties of various kinds of integral equations.											
CO5	Deve	Develop their attitude towards problem solving.											
		Mapping	g of cour	se outco	mes with	the prog	gram out	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
		102	103	,	103	100	107	100	10)	1010			
CO1	$\sqrt{}$	-	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	-	-	-	$\sqrt{}$	√			
CO2	V	-	V	$\sqrt{}$	V	-	-	-	√	V			
CO2			. 1	-1					. /	.1			
CO3	$\sqrt{}$	-	$\sqrt{}$	√	$\sqrt{}$	-	-	-	√	V			
CO4	V	1	-	1	√	-	-	-	1	√			
005	.1		. 1	. 1	. 1								
CO5	V	-	V	$\sqrt{}$	√	-	-	_	√	$\sqrt{}$			
				<u> </u>	<u> </u>		1	<u> </u>	1				

Course Title: Mathematical Methods Course Code: MSM105-18

UNIT I

Laplace Transforms: Laplace Transform, Properties of Laplace Transform, Inverse Laplace Transform, Convolution theorem, Laplace transform of periodic functions, unit step function and impulsive function, Application of Laplace Transform in solving ordinary and partial differential equations and Simultaneous linear equations;

UNIT II

Fourier Transforms: Fourier transform, properties of Fourier transform, inversion formula, convolution, Parseval's equality, Fourier transform of generalized functions, application of Fourier transforms in solving heat, wave and Laplace equation. Fast Fourier transform.

UNIT III

Integral Equations: Relations between differential and integral equations, Green's function, Linear equations in cause and effect, Integral equations of Fredholm and Volterra type, solution by successive substitution and successive approximation, integral equations with degenerate kernels.

UNIT IV

Integral equations of convolution type and their solutions by Laplace transform, Fredholm's theorems, integral equations with symmetric kernel, Solutions with separable kernels, Characteristic numbers, Resolvent kernel, Eigen values and Eigen functions of integral equations and their simple properties.

Text and Reference Books:

- 1. Sneddon, I.N., The Use of Integral Transforms. McGraw Hill, 1985.
- 2. Goldberg, R.R., Fourier Transforms. Cambridge University Press, 1970.
- 3. Smith, M.G., Laplace Transform Theory. Van Nostrand Inc., 2000.
- 4. Elsegolc, L., Calculus of Variation. Dover Publications, 2010.
- 5. Kenwal, R.P., Linear Integral Equation; Theory and Techniques. Academic Press, 1971.
- 6. Hildebrand, F.B., Methods of Applied Mathematics (Latest Reprint). Dover Publications.
- 7. Pal, S. and Bhunia, S.C., *Engineering Mathematics*. Oxford University Press, 2015.

MSM106	5-18	Introduct	tion to C	omputer	Algebra	.]	L-0, T-0,	P-3	3 Cre	dits				
		System												
Pre-requi	site: Ba	sic knowl	edge of c	computer		1		1						
Course O	bjectiv	es: This co	ourse pro	vides an i	ntroducti	on to Co	mputer A	lgebra Sy	stem (CA	AS) viz.				
MATLAB	and M	ATHEMA	TICA th	at are wid	ely used	in scienti	fic compu	iting. The	e major o	bjective				
of this cou					_					develop				
programm	ing skil	ls for solv	ing probl	lems of re	eal world	more eff	ficiently a	nd accura	ately					
Course O	utcome	es: At the	end of the	e course,	the stude	nts will b	e able to							
CO1	App	ly the	knowled	lge of	mathem	atical	software	viz. I	MATLA	B and				
		ГНЕМАТ		•		oblems et	fficiently.							
CO2	Utili	ze the syn	nbolic too	ols of thes	e CAS fo	r handlir	ng differe	nt mather	natical pi	roblems				
		xample, s					•		1					
CO3	Deci	Design and analyze their own computer codes of mathematical methods.												
CO4		Understand and modify existing codes in scientific computing based on the use of												
	diffe	different loops and conditional structures.												
CO5	Use	these CAS	S with the	e understa	anding of	limitatio	ons of the	systems.						
CO6	Iden	tify the ch	allenging	g problem	s in math	nematics	and find	their appi	ropriate					
	solu	tions accu	rately and	d efficien	tly using	Compute	er Algebr	a System	•					
		Mapping	g of cour	se outco	mes with	the pro	gram out	comes						
		T =		l	T =		T =		I	T =				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1	V	-	-	-	-	V	-	-	V	1				
CO2	$\sqrt{}$	-	-	-	-	$\sqrt{}$	-	-	√	1				
CO3	√	-	-	-	-	√	-	-	√	√				
004						1								
CO4	-	-	-	-	-	V	-	-	√	V				
CO5	V	-	-	-	-	V	-	-	V	1				
CO6	-	-	-	√	-	-	-	-	√	√				

Course Title: Introduction to Computer Algebra System Course Code: MSM106-18

UNIT-I

The MATLAB environment, scalars, variables, arrays, mathematical operations with arrays, built-in and user defined functions, graphics: two-dimensional and three-dimensional, m-files: script and function files, functions: input; disp and fprintf, relational and logical operators, symbolic math: symbolic objects and expressions; collect; expand; factor; simplify; simple; pretty; solve; diff and int commands, Programming: if-end structure; if-else-end structure; if-elseif-else-end structure; loops: for-end and while-end

UNIT-II

The structure of MATHEMATICA, notebook interfaces, constants, variables, algebraic calculations, four kinds of brackets, lists, tables, expressions, functions, built-in functions, functional operations, graphics, patterns, manipulating lists, transformation rules, evaluation of expressions, modularity, manipulating notebooks, relational and logical operators, symbolic math commands: D; Integrate; Sum; Product; Solve; Eliminate; Reduce; Series; Limit; Minimize; basic numerical mathematics, Programming: conditionals; loops: Do; For and While.

Text and Reference Books:

- 1. Higham, D.J. and Higham, N.J., MATLAB Guide, 2nd Edition. Society for Industrial and Applied Mathematics (SIAM), 2005.
- 2. Gilat, A., MATLAB: An Introduction with Applications, 5th Edition. John Wiley & Sons, 2014.
- 3. Wolfram, S., The MATHEMATICA Book, 5th revised edition. Wolfram Media Inc, 2004.
- 4. Abell, M. and Braselton, J., Mathematica by Example, 5th Edition. Academic Press, 2017.

MSM20	1-18		Alg	gebra-II]	L -4, T-1,	P-0	4 Cre	dits		
Pre-requ	isite: Al	gebra-I										
Course (Algebra.' concepts Galois ex as the stu	The fund of Polynatensions	amental omial rin etc. Thro	theorems gs, UFD, oughout tl	of algebr ED, PID he course	aic struct , Field ex , Advanc	ures are extensions ed Core s	explained , Einstein standards	. Student a's irredu	s will exp cibility c	olore the riterion,		
Course C	Outcome	s: At the	end of th	e course,	the stude	ents will b	e able to					
CO1		•	owledge o	_		•	mathema	tical mat	urity and	enables		
CO2	Utili	ze the Po	lynomial	rings, UF	FD, ED, I	PID to so	ve differ	ent relate	d proble	ms.		
CO3	close	ed fields,	analyze of Splitting results in	g fields,	• •	_			_	•		
CO4		Design, analyze and implement the concepts of Gauss Lemma, Einstein's irreducibility criterion, separable extensions etc. Create, select and apply appropriate algebraic structures such as Galois extensions,										
CO5	Auto	morphis	and appl ms of gro d use the	ups and f	ixed field	ls, Funda	mental th					
CO6	Iden	tify the cl	hallenging	g problen	ns in adva	anced Alg	gebra to p	oursue fu	rther rese	arch.		
	l e	Mappin	g of cour	rse outco	mes with	the pro	gram out	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	$\sqrt{}$	√	-	-	$\sqrt{}$	-	V	-	√	√		
CO2	V	√	-	-	V	-	√	-	V	V		
CO3	V	V	-	$\sqrt{}$	V	-	V	-	$\sqrt{}$	V		
CO4	V	V	V	V	V	-	√	-	$\sqrt{}$	V		
CO5	V	√	√	V	V	-	√	-	$\sqrt{}$	V		
CO6	1	√	-	V	√	-	√	-	√	V		
	1	1		1	1	1	ı	1	1			

Course Title: Algebra-II

Course Code: MSM201-18

UNIT-I

Polynomial rings, factorization of polynomials in one variable over a field. Unique factorization domains, unique factorization in R[x], where R is a Unique Factorization Domain. Euclidean and Principal ideal domain. [Ref 2: Unit 2]

UNIT-II

Gauss Lemma, irreducible polynomials and Eisenstein's Irreducibility Criterion, Fields, Adjunction of roots, Algebraic extensions of field. [Ref 2: Unit 2,4]

UNIT-III

Algebraically closed fields, Splitting fields, normal extensions, finite fields, separable extensions. [Ref 2: Unit 4]

UNIT-IV

Automorphism of groups and fixed fields, Galois extensions. The fundamental theorem of Galois Theory, Fundamental theorem of algebra. [Ref 2: Unit 4]

- 1. Bhattacharya, P.B., Jain, S.K. and Nagpaul, S.R., *Basic Abstract Algebra*, 2nd *Edition*. U. K.: Cambridge University Press, 2004.
- 2. Dummit, David. S., and Foote, Richard M., *Abstract Algebra*, 3rd Edition. New Delhi: Wiley, 2011
- 3. Herstein, I.N., *Topics in Algebra*, 2nd Edition. New Delhi: Wiley, 2006.
- 4. Singh, Surjeet, and Q. Zameeruddin. *Modern Algebra*, 7th Edition. New Delhi: Vikas Publishing House, 1993.
- 5. Ash, R., Abstract Algebra: The Basic Graduate Year, Dover Publications Inc, 2006.

MSM20	2-18		Real A	nalysis-	II]	L-4, T-1,	P-0	4 Cre	dits			
Pre-requi	isite: Ca	olculus of	several v	variables :	and Real	Analysis	_T						
mathemat integration mathemat application	ical anal n that h ics. Furtl	ysis, viz. ave man	derivativ y importa	e, MVTs ant appli	s, functions i	ns of sev n differe	eral varia nt brancl	bles, meanes of p	asure the ure and	ory and applied			
Course O	utcomes	s: At the	end of the	e course,	the stude	nts will b	e able to						
CO1	in ord	-	_	-			veral vari nt mather			-			
CO2	Unde detail		e nature	of abstra	ct mathe	matics ar	nd explor	e the cor	ncepts in	further			
CO3		Utilize the concepts of derivative, MVTS for vector-valued functions in applications different fields for example management, industry and economics etc.											
CO4	Reco	Recognize the need of concept of measure from a practical view point.											
CO5		erstand me ols in diff		-	_		heoretical	l point of	f view an	d apply			
CO6		nd their k ols for fu	_		•	•	egration bed areas	y selecti	ng and a	pplying			
		Mapping	g of cour	se outco	mes with	the prog	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	$\sqrt{}$	-	-	V	√	-	-	-	V	V			
CO2	-	V	-	V	V	-	-	-	V	V			
CO3	V	-	-	V	V	-	-	-	1	1			
CO4	-	V	-	V	V	-	-	-	V	V			
CO5	-	V	-	V	V	-	-	-	V	V			
CO6	-	-	-	V	√	-	-	-	V	V			

Course Title: Real Analysis-II

Course Code: MSM202-18

UNIT-I

Differentiation of Real functions, Mean value theorems, Taylor's theorem, Differentiation of vectorvalued functions, Functions of several variables: Linear transformations, Differentiation, Contraction principle, The Inverse function theorem, The implicit function theorem. [Ref. 3]

UNIT-II

Lebesgue Measure: Introduction, Lebesgue outer measure, Measurable sets and Lebesgue measure, non-measurable set, Measurable functions, Borel and Lebesgue measurability, Littlewood's three principles.

UNIT-III

Lebesgue Integral: The Riemann integral, The Lebesgue integral of a bounded function over a set of finite measure, the integral of a nonnegative function, The general Lebesgue integral, Convergence in measure.

UNIT-IV

Differentiation and Integration: Differentiation of monotone functions, The Four derivatives, Functions of bounded variation, differentiation of an integral, Lebesgue Differentiation Theorem. Absolute continuity. Convex Functions.

- 1. Royden, H.L. and Fitzpatrick, P.M., Real Analysis, 4th Edition. New Delhi: Pearson, 2010.
- 2. Barra, G. de., Measure Theory and Integration, New Delhi: Woodhead Publishing, 2011.
- 3. Rudin, W., *Principles of Mathematical Analysis*, 3rd Edition. New Delhi: McGraw-Hill Inc., 2013.
- 4. Carothers, N. L., *Real Analysis*, Cambridge University Press, 2000.
- 5. Apostol, T.M., *Mathematical Analysis –A modern approach to Advanced Calculus*. New Delhi: Narosa Publishing House, 1957.

MSM203	3-18		Mec	hanics-I]	L-4, T-1,	P-0	4 Cree	dits		
D.	2	· M 1	• 1	C 1 1	<u> </u>	1 11	1					
Pre-requi	site: Bas	sic Mecha	anics and	Calculus	oi sever	ai variab	ies					
Course C)bjective	es: To d	lemonstra	ate know	ledge of	function	nal and	extremu	n path a	and the		
application			_	_			_					
knowledge			_			_	_	-	_			
and Lagra	_							-				
for comp			ıl system	ns using	the Lag	grangian	and Ha	miltoniar	n formula	tion of		
classical n			1 0.1		.1 . 1	. '11 1	11 /					
Course O	utcomes	S: At the 6	ena or the	e course,	tne stude	nts will t	e able to					
CO1	Unde	rstand the	e concept	t of funct	ional and	l determi	ne station	nary path	s of a fu	nctional		
	to dec	duce the d	differenti	al equation	on for sta	tionary p	aths.					
CO2	Use I	Euler-Lag	grange ec	uation to	find sta	tionary p	oaths and	its appli	cations i	n some		
		cal funda										
CO3	Defin	Define and understand basic mechanical concepts related to discrete and continuous										
	mech	mechanical systems.										
CO4	descr	ibe and	understa	nd the n	notion o	f a mec	hanical s	system u	sing La	grange-		
	Hami	lton form	alism.									
CO5	Conn	ect conce	epts and r	nathemat	ical rigor	in order	to enhand	ce unders	standing.			
		Mapping	g of cour	se outcoi	mes with	the prog	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
	POI	PO2	PO3	PU4	POS	PO0	PO/	PO8	PO9	POIU		
CO1	-	√	-	√	√	-	-	-				
CO2	V	-	1	V	√	-	-	-	√	√		
CO3	√		√	1	√				√ √	1		
	٧	_	v v	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, v	_	_	_	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
CO4	$\sqrt{}$	√	-	√	√	-	-	-	V	V		
CO5	$\sqrt{}$	-	$\sqrt{}$	√	√	-	-	-	√	√		

Course Title: Mechanics-I

Course Code: MSM203-18

UNIT-I

Functional and its properties, Variation of a functional, Motivating problems: Brachistochrone, isoperimetric, Geodesics. Fundamental lemma of calculus of variation, Euler's equation for one dependent function of one and several variables. Generalization to *n* dependent functions and dependence on several derivatives. Invariance of Euler's equation, Moving end points problem, extremum under constraints.

UNIT-II

Constraints, Generalized coordinates, Generalized velocity, Generalized force, Generalized potential, D'Alembert principle, Lagrange's equation of first kind and second kind, uniqueness of solution, Energy equation for conservative field. Examples based on solving Lagrange's equation.

UNIT-III

Legendre transformation, Hamilton canonical equation, cyclic coordinates, Routhian procedure, Poisson bracket, Poisson's identity, Jacobi-Poisson theorem, Hamilton's principle, Principle of Least action, Small oscillations of conservative system, Lagrange's equation for small oscillations, Nature of roots of frequency equation, Principle oscillations. Normal coordinates.

UNIT-IV

Canonical transformations, Hamilton-Jacobi equation. Method of Separation of variables, Lagrange's bracket, Hamilton's equations in Poisson bracket, Canonical character of transformation through Poisson bracket. Invariance of Lagrange's bracket and Poisson's bracket. Action-Angle Variables.

- 1. Elsegolc, L.D., Calculus of Variation, Dover Publication, 2007.
- 2. Gantmacher, F., Lectures in Analytic Mechanics, Moscow: Mir Publisher, 1975.
- 3. Goldstien, H., Poole, C. and Safco, J.L., *Classical Mechanics*, 3rd Edition. Addison Wesely, 2002
- 4. Landau, L.D. and Lipshitz, E.M., Mechanics, Oxford: Pergamon Press, 1976.
- 5. Marsden, J.E., Lectures on Mechanics, Cambridge University Press, 1992.
- 6. Biswas, S. N., Classical Mechanics, Books and Applied (P) Ltd., 1999.

order PDE and compatible systems.	hods for various ation of , second												
differential equations and their classification. This course explains various analytic met computing the solutions of various partial differential equations. It also explains applications of partial differential equations in real physical phenomenon like wave equations, diffusion equations and heat flow equation to students. Course Outcomes: At the end of the course, the students will be able to CO1 Understand partial differential equations of first order (linear and nonlinear and higher order.) CO2 Apply various analytic methods for computing solutions of various PDEs. CO3 Determine integral surfaces passing through a curve, characteristic curves order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave of heat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √ √ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	hods for various ation of , second												
differential equations and their classification. This course explains various analytic met computing the solutions of various partial differential equations. It also explains applications of partial differential equations in real physical phenomenon like wave equations, diffusion equations and heat flow equation to students. Course Outcomes: At the end of the course, the students will be able to CO1 Understand partial differential equations of first order (linear and nonlinear and higher order.) CO2 Apply various analytic methods for computing solutions of various PDEs. CO3 Determine integral surfaces passing through a curve, characteristic curves order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave theat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √ √ ✓	hods for various ation of , second												
computing the solutions of various partial differential equations. It also explains applications of partial differential equations in real physical phenomenon like wave equations, diffusion equations and heat flow equation to students. Course Outcomes: At the end of the course, the students will be able to CO1 Understand partial differential equations of first order (linear and nonlinear and higher order.) CO2 Apply various analytic methods for computing solutions of various PDEs. CO3 Determine integral surfaces passing through a curve, characteristic curves order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave theat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √ ✓	various ation of												
applications of partial differential equations in real physical phenomenon like wave equations, diffusion equations and heat flow equation to students. Course Outcomes: At the end of the course, the students will be able to CO1 Understand partial differential equations of first order (linear and nonlinear and higher order. CO2 Apply various analytic methods for computing solutions of various PDEs. CO3 Determine integral surfaces passing through a curve, characteristic curves order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave theat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √ √	, second												
tring, diffusion equations and heat flow equation to students. Course Outcomes: At the end of the course, the students will be able to CO1 Understand partial differential equations of first order (linear and nonlinear and higher order. CO2 Apply various analytic methods for computing solutions of various PDEs. CO3 Determine integral surfaces passing through a curve, characteristic curves order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave theat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √ √	, second												
CO1 Understand partial differential equations of first order (linear and nonlinear and higher order. CO2 Apply various analytic methods for computing solutions of various PDEs. CO3 Determine integral surfaces passing through a curve, characteristic curves order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave theat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √ ✓													
CO1 Understand partial differential equations of first order (linear and nonlinear and higher order. CO2 Apply various analytic methods for computing solutions of various PDEs. CO3 Determine integral surfaces passing through a curve, characteristic curves of order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave theat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √													
and higher order. CO2 Apply various analytic methods for computing solutions of various PDEs. CO3 Determine integral surfaces passing through a curve, characteristic curves of order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave theat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √													
and higher order. CO2 Apply various analytic methods for computing solutions of various PDEs. CO3 Determine integral surfaces passing through a curve, characteristic curves of order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave theat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √													
CO3 Determine integral surfaces passing through a curve, characteristic curves of order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave theat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ - √ √ - √ ✓ - √ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓													
CO3 Determine integral surfaces passing through a curve, characteristic curves of order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave theat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ - √ √ - √ ✓ - √ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓													
order PDE and compatible systems. CO4 Understand the formation and solution of some significant PDEs like wave of heat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √	Determine integral surfaces passing through a curve, characteristic curves of second												
CO4 Understand the formation and solution of some significant PDEs like wave of heat equation and diffusion equation. CO5 Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ √ √	second												
heat equation and diffusion equation. Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 V - V V V V													
Apply the knowledge of PDEs and their solutions in order to understand phenomena. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 V V V V V V V V V	Understand the formation and solution of some significant PDEs like wave equation,												
PO1													
Mapping of course outcomes with the program outcomes	physical												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ - - - √													
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 CO1 √ - √ √ - - - √													
CO1													
	PO10												
CO2	1												
	1 1												
CO3	1												
	√ √												
CO4 \(\ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												
CO5	\[\sqrt{1} \]												
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												

Course Title: Partial Differential Equations

Course Code: MSM204-18

UNIT-I

First Order PDE: Partial differential equations; its order and degree; origin of first-order PDE; determination of integral surfaces of linear first order partial differential equations passing through a given curve; surfaces orthogonal to given system of surfaces; non-linear PDE of first order, Cauchy's method of characteristic; compatible system of first order PDE; Charpit's method of solution, solutions satisfying given conditions, Jacobi's method of solution.

UNIT-II

Second and Higher Order PDE: Origin of second order PDE; linear second and higher order PDE with constant and variable coefficients; characteristic curves of the second order PDE; Monge's method of solution of non-linear PDE of second order.

UNIT-III

Separation of Variable Method: Separation of variables for PDE; wave, diffusion and Laplace equations and their solutions by Separation of variables method; Elementary solutions of Laplace equations.

UNIT-IV

Applications of PDE: Vibrations governed by one and two-dimensional wave equations; vibrations of string and membranes; three dimensional problems; diffusion equation; resolution of boundary value problems for diffusion equations and elementary solutions of diffusion equations.

- 1. Sneddon, I.N., *Elements of Partial Differential Equation*, 3rd Edition. McGraw Hill Book Company, 1998.
- 2. Copson, E.T., *Partial Differential Equations*, 2nd Edition. Cambridge University Press, 1995.
- 3. Strauss, W.A., Partial Differential Equations: An Introduction, 2nd Edition. 2007.
- 4. Sharma, J.N. and Singh, K., *Partial differential equations for engineers and scientists*, 2nd *Edition*. New Delhi: Narosa Publication House, 2009.

MSM20	5-18		Numeri	cal Analy	ysis	I	L-4, T-1, I	P-0	4 Cree	dits			
Pre-requ	isite: B	asic Calcu	lus, anal	ysis and l	inear alg	ebra		'					
	•			_			the basic						
Mathema													
	_	-			_		lytical sol						
	-				_	-	ysis and						
numerica initial and			_		-			_	uions, nu	тепса			
Course C	Outcome	s: At the	end of the	e course,	the stude	nts will b	e able to						
CO1	Iden	tity and ar	nalyze dif	ferent ty	pes of err	ors encou	ıntered in	numeric	al comp	ıting.			
CO2	Appl	ly the kno	wledge o	f Numeri	cal Mathe	ematics to	solve pro	oblems e	fficiently	arising			
	in sc	ience, eng	gineering	and econ	omics etc	c.							
CO3	Utili	ze the too	ls of the	Numeric	al Mathe	matics in	order to	formulat	te the rea	l-world			
	prob	lems from	the view	point of	numeric	al mather	natics.						
CO4	Desi	gn, analyz	ze and in	nlement	of nume	rical metl	hods for s	olving d	ifferent t	vpes of			
				_			s of ordina	_					
	etc.	etc.											
CO5	Crea	Create, select and apply appropriate numerical techniques with the understanding of											
		their limitations so that any possible modification in these techniques could be carried											
	out i	n further i	esearch.										
CO6	Iden	tify the ch	allenging	g problen	ns in con	tinuous n	nathematic	cs (whic	h are dif	ficult to			
	deal	with anal	ytically)	and find t	their appr	opriate so	olutions a	ccurately	and effi	ciently.			
		Mapping	g of cour	se outco	mes with	the prog	gram outo	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	-	-	-	V	-	-	-	-	V	√			
CO2	V	-	_	_	_	-	_	_	V	V			
									,				
CO3	$\sqrt{}$	-	-	-	-	-	-	-	V	V			
CO4	V	-	-	-	-	-	-	-	V	V			
CO5	$\sqrt{}$	V	-	-	-	V	-	-	V	V			
CO6	-	-	_	√	-	-	-	-	√	√			
	1		<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>			

Course Title: Numerical Analysis Course Code: MSM205-18

UNIT-I

Numerical computation and Error analysis: Numbers and their accuracy, Floating point arithmetic, Errors in numbers, Error estimation, General error formulae, Error propagation in computation. Inverse problem of error analysis and Numerical instability. Algebraic and transcendental equations: Bisection method, Iteration method, Regula-Falsi method, Secant method, Newton-Raphson's method. Convergence of these methods. Lin-Bairstow's method, Muller's method, Graeffe's root squaring method, Solution of system of nonlinear equations, Complex roots by Newton-Raphson's method.

UNIT-II

System of linear algebraic equations: Gauss elimination method without pivoting and with pivoting, Gauss-Jordon method, LU-factorization method, Jacobi and Gauss-Seidal methods, Convergence of iteration methods, Round-off errors and refinement, ill-conditioning, Partitioning method, Inverse of matrices. Eigen values and eigen vectors: Rayleigh Power method, Given's method and Householder's method.

UNIT-III

Interpolation: Finite differences, Newton's interpolation formulae, Gauss, Stirling's and Bessel's formulae, Lagrange's, Hermite's and Newton's divided difference formulae. Numerical differentiation and integration: differentiation at tabulated and non-tabulated points, Maximum and minimum values of tabulated function, Newton-Cotes Formulae-Trapezoidal, Simpson's, Boole's and Weddle' rules of integration with errors, Romberg integration, Gaussian integration, Double integration by Trapezoidal and Simpson's rules.

UNIT-IV

Ordinary differential equations: Taylor series and Picard's methods, Euler's and modified Euler methods, Runge-Kutta methods, Predictor-Corrector methods: Adams-Bashforth's and Milne's methods. Error analysis and accuracy of these methods. Solution of simultaneous and higher order equations, Boundary value problems: Finite difference and Shooting methods.

- 1. Sharma, J.N., *Numerical Methods for Engineers and Scientists*, 2nd Edition. Narosa Publ. House New Delhi/Alpha Science International Ltd., Oxford UK, 2007, Reprint 2010.
- 2. Jain, M.K., Iyengar, S.R.K. and Jain, R.K., Numerical Methods for Scientific and Engineering Computation, 5th Edition. New Age International Publ. New Delhi, 2010
- 3. Bradie, B., A Friendly Introduction to Numerical Analysis. Pearson Prentice Hall, 2006.
- 4. Atkinson, K.E., *Introduction to Numerical Analysis*, 2nd Edition. John Wiley, 1989.
- 5. Scarborough, J.B., Numerical Mathematical Analysis. Oxford & IBH Publishing Co., 2001.

MSM20	6-18	Nυ	merical	Analysis	(Lab)		L-0, T-0, 1	P-3	3 Cree	dits	
Pre-requi					uter prog	grammin	g and Co	mputer	Algebra	System	
Course O numerical equations, initial and develop p programs	metho metho interp boundarogram for solv	res: This cods for solution an arry value pring skill ving proble	ourse is diving different distribution of the contraction of the second second of the contraction of the con	lesigned to ferent problems of ordina tudents in	oblems valumerical ry different order to nice, engin	viz. non different differe	tanding of linear equinitiation an liations etcand implemand econor	ations, s d integr . Further ment the	system or ation, nut, this cou	f linear merical arse will	
Course O	utcom	es: At the	end of the	e course,	the stude	nts will	be able to				
CO1	own prob extr	computer blems viz. apolation,	codes o nonlinea numeric	f numerio ar equational differ	cal methoons, system rentiation	ods for sem of leads in and in	ng to deve solving dif inear equa ntegration, equations	fferent to ations, i numer	ypes of c nterpolat	omplex on and	
CO2	l l	lerstand di ven proble		_	ation mod	des of a	numerical	method	in order	to solve	
CO3	Ana	Analyze and modify computer codes available in the scientific literature.									
CO4	MA	Utilize the symbolic tools of Computer Algebra System (CAS) for example MATLAB, MATHEMATICA and MAPLE independently and in their computer codes for solving a given problem.									
CO5	und	_	of their				s as a co an be imp	_			
CO6	deal		ytically)				mathemations a				
	1	Mappin	g of cour	se outcoi	mes with	the pro	gram out	comes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	V	-	_	-	-	-	-	-	V	√	
CO2	-	√	-	-	-	-	-	-	V	V	
CO3	V	√	-	-	-	-	-	-	√	1	

CO4		-	-	-	-	-	-	-	$\sqrt{}$	$\sqrt{}$
CO5	1	V	-	-	-	-	-	-	V	V
CO6	-	-	-	V	-	-	-	-	V	V

Course Title: Numerical Analysis (LAB)

Course Code: MSM206-18

The following programs of following methods are to be practiced:

- 1. To find a real root of an algebraic/transcendental equation by using Bisection method.
- 2. To find a real root of an algebraic/transcendental equation by using Regula-Falsi method.
- 3. To find a real root of an algebraic/ transcendental equation by using Newton-Raphson method.
- 4. To find a real root of an algebraic/transcendental equation by using Iteration method.
- 5. Implementation of Gauss-Elimination method to solve a system of linear algebraic equations.
- 6. Implementation of Jacobi's method to solve a system of linear algebraic equations.
- 7. Implementation of Gauss-Seidel method to solve a system of linear algebraic equations.
- 8. To find differential coefficients of 1st and 2nd orders using interpolation formulae.
- 9. To evaluate definite integrals by using Newton Cotes integral formulae.
- 10. To evaluate definite integrals by using Gaussian Quadrature.
- 11. To evaluate double integrals by using Trapezoidal and Simpson method.
- 12. To compute the solution of ordinary differential equations with Taylor's series method.
- 13. To compute the solution of ordinary differential equations by using Euler's method.
- 14. To compute the solution of ordinary differential equations by using Runge -Kutta methods.
- 15. To compute the solution of ordinary differential equations by using Milne-Simpson method.
- 16. To compute the solution of Boundary value problems of Ordinary Differential Equations by using Finite Difference method.
- 17. To compute the solution of Boundary value problems of Ordinary Differential Equations by using Shooting method.

- 1. Fausett, L.V., *Applied Numerical Analysis using MATLAB*, 2nd Edition. Pearson Prentice Hall, 2007.
- 2. Mathews, J.H. and Fink, K.D., *Numerical Methods using MATLAB*, 4th Edition. Pearson Prentice Hall, 2004.
- 3. Balagurusamy, E., Object Oriented Programming with C++. New Delhi: Tata McGraw Hill, 1999.
- 4. Conte, S.D. and Boor, C.D., *Numerical Analysis*. New York: McGraw Hill, 1990.

MSM30	1-18		To	pology]	L-4, T-1,	P-0	4 Cre	dits				
Pre-requ	isite: Rea	al Analys	is-I					·						
~ .				2.1										
Course (•		•				• •			•				
Topologic	-			-		•				-				
Homeom	-					-			-					
be genera		opologica	ıl spaces,	so that st	udents ma	ay learn a	and appred	ciate the r	nature of	abstract				
Mathema		A1	1 0.1		.1 . 1	4 '11 1	11 4							
Course C	outcomes	S: At the	ena or the	e course,	tne stude	nts will t	e able to							
CO1	Unde	erstand the	e concept	ts of topo	logical sı	paces and	the basic	c definition	ons of or	en sets.				
		bourhoo	-	-					-					
	space) .												
CO2	Unde	erstand th	e concer	t of Base	es and Si	ubbases.	create ne	ew topolo	ogical sp	aces by				
002		subspace	-	01 200		,,	010000 110	opore	5810th 5P					
<u> </u>	77.1	, 1	<u>,, ., ., ., ., ., ., ., ., ., ., ., .</u>				. 1	1	1.					
CO3		Understand continuity, compactness, connectedness, homeomorphism and												
		opological properties.												
CO4		Understand how points of space are separated by open sets, Housdroff spaces and												
	their	importan	ce.											
CO5	Unde	erstand re	gular and	normal s	spaces an	d some ii	nportant	theorems	in these	spaces.				
		Mappin	g of cour	se outcoi	mes with	the pros	gram out	comes						
			9				,							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1	√	V	-	V	V	-	-	-	√	V				
CO2	V	V	V	V	1	-	-	-	V	V				
CO3	1	1	-	√ V	√	-	_	-	1	1				
CO4	1	V	-	1	1	-	-	-	V					
CO5	V	V	-	√	√	-	-	-	√	V				

Course Title: Topology

Course Code: MSM301-18

UNIT-I

Introduction topological spaces, closed sets, Closure, Dense subsets, neighborhoods, interior, exterior and boundary, Accumulation points and derived sets.

Bases and subbases, Subspaces and relative Topology, Alternative methods of defining a Topology in terms of Kuratowski closure operator and neighborhood systems.

UNIT-II

Open mappings and closed mappings, Continues functions and homomorphism's, Compactness and local Compactness. One-point compactification, connected and arc-wise connected spaces, Components and Locally connected spaces.

UNIT-III

T0 and T1 spaces, T2 spaces and sequences. Hausdorffness of one-point compactification, Axioms of Countability and Seperability, Equivalence of Separable, second Axiom and Lindel of properties in a metric spaces. Equivalence of compact and countably compact sets in metric spaces.

UNIT-IV

Regular and completely regular, Normal and completely normal spaces. Metric spaces as T2, completely normal and first axiom spaces, Urysohn's Lemma, Tietze Extension Theorem.

- 1. Munkres, J. R., *Topology, a first course*, Prentice-Hall of India Ltd., New Delhi, 2000.
- 2. Joshi, K. D., *An introduction to general topology*, 2nd edition, Wiley Eastern Ltd., New Delhi, 2002.
- 3. Simmons, G.F., *Introduction to topology and Modern Analysis*, McGraw Hill Publications, 2017
- 4. Kelley, J. L., General Topology, Springer Verlag, New York, 1990.
- 5. Armstrong, M.A., *Basic Topology*, Springer International Ed., 2005.

MSM30	2-18	Number	r Theory	and Cry	ptograp	hy l	L-4, T-1,	P-0	4 Cree	dits			
Pre-requ	isite: Co	ngruence	s, Numbe	er System	<u> </u>								
Course Co	d enable	them to s	tudy high	ner course	es in num								
Course C	Outcomes	s: At the	end of the	e course,	the stude	nts will b	e able to						
CO1		y the kr	_			•				a good			
CO2		ze the condre sym	_					indices,	residue	classes,			
CO3	l l	ify and a em, Mobi	-				-						
CO4	_	gn, analyz ent types		_		_	_	_		solving			
CO5		Create, select and apply appropriate number theoretic techniques such as primes, greatest integer functions in Cryptography to use in real life problems.											
CO6	Ident soluti	ify the ch	allenging	g problen	ns in mod	lern math	nematics	and find	their app	ropriate			
		Mapping	g of cour	se outcoi	mes with	the prog	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	√	√	-	V	V	-	-	-	√	V			
CO2	√	1	-	V	V	-	-	-	√	√			
CO3	V	1	$\sqrt{}$	V	V	-	-	-	V	V			
CO4	√	√	-	V	V	-	-	-	V	V			
CO5	√	√	-	V	V	-	-	-	V	V			
CO6	V	-	V	V	-	-	-	-	V	V			

Course Title: Number Theory and Cryptography Course Code: MSM302-18

UNIT-I

Divisibility, Greatest common divisor, Euclidean Algorithm, The Fundamental Theorem of arithmetic, congruences, Special divisibility tests, Chinese remainder theorem, residue classes and reduced residue classes, Fermat's little theorem, Wilson's theorem, Euler's theorem.

UNIT-II

Arithmetic functions $\phi(n)$, d(n), $\sigma(n)$, $\mu(n)$, Mobius inversion Formula, the greatest integer function, perfect numbers, Mersenne primes and Fermat numbers,

UNIT-III

Primitive roots and indices, Quadratic residues, Legendre symbol, Gauss's Lemma, Quadratic reciprocity law, Jacobi symbol, Diophantine equations: ax + by = c, $x^2 + y^2 = z^2$, $x^4 + y^4 = z^2$, sums of two and four squares, [Ref. 2]

UNIT-IV

Cryptography: some simple cryptosystems, need of the cryptosystems, the idea of public key cryptography, RSA cryptosystem. [Ref. 4]

- 1. Burton, D.M., Elementary Number Theory, 7th Edition. McGraw-Hill Education, 2010.
- 2. Hardy, G.H. and Wright, E.M., *An introduction to the Theory of Numbers, 4th Edition*. Oxford University Press, 1975.
- 3. Niven, I., Zuckerman, H.S. and Montgomery, H.L., *Introduction to Theory of Numbers*, 5th *Edition*. John Wiley & Sons, 1991.
- 4. Koblitz N., *A Course in Number Theory and Cryptography, Graduate Texts in Mathematics, No.114*. New-York: Springer-Verlag, 1987.
- 5. Stallings, W., Cryptography and Network Security, 5th Edition. Pearson, 2010.

MSM303	3-18	M	lathemat	tical Stat	istics	I	L-4, T-1, I	P-0	4 Cred	lits
Pre-requi	site: Bas	sic Statist	ics and C	Calculus o	of several	variables	S			
Course O	•								_	
types of prowith stand		•		_	• 1			ims to ed	quip the s	students
Course O	utcomes	: At the	end of the	e course,	the stude	nts will b	e able to			
CO1		le big da iques.	ta and d	lraw infe	erences for	orm it b	y applyin	g appro	priate st	atistical
CO2	-	ore the b				of centr	al tenden	cy, disp	ersion ar	nd their
CO3	Expla utiliz		lifferent	types of	f discrete	e and co	ontinuous	distribu	itions an	d their
CO4	Deal	with forn	nulation o	of hypoth	eses as p	er situatio	ons and th	eir testir	ng.	
CO5		y the kno rments.	wledge o	f statistic	cal techni	ques in v	arious exp	periment	tal and in	dustrial
		Mapping	g of cour	se outcoi	mes with	the prog	gram outo	comes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	$\sqrt{}$	-	V	V	V				V	V
CO2	V	-	$\sqrt{}$	$\sqrt{}$	V				V	V
CO3	V	-	$\sqrt{}$	V	V				V	√
CO4	$\sqrt{}$	-	V	V	V				√	√
CO5	$\sqrt{}$	-	$\sqrt{}$	V	V				V	V

Course Title: Mathematical Statistics

Course Code: MSM303-18

Unit I

Classical and axiomatic approach to the theory of probability, additive and multiplicative law of probability, conditional probability and Bayes theorem.Random variable, function of random variable, and their distributions, probability mass function, probability density function, cumulative distribution function.

Unit II

Two dimensional random variables, joint, marginal and conditional distributions, independence of random variables, expectation, conditional expectation, moments, product moments, probability generating functions, moment generating function and its properties. Chebyshev's, Markov, Jenson, Techebyshey's, inequalities, stochastic convergence, central limit theorem. characteristic function and its elementary properties.

Unit III

Study of various discrete and continuous distributions, Binomial, Poisson, Geometric, Hyper geometric, Multinomial. Uniform, Exponential, Normal distributions, Gamma distribution, Cauchy, exponential, Beta and gamma distributions, Bivariate normal distribution and distribution of order statistics and range.

Unit IV

Concept of sampling distribution and its standard error, Derivation of sampling distributions of χ^2 , t and F distribution of sample mean and sample variance Testing of hypotheses, fundamental notions important tests based on normal distributions, Tests of significance: tests based on normal distribution, χ^2 , t and F statistic. Analysis of variance: One way and two-way classifications.

- 1. Hogg R. V., McKean J. W. and Craig A. T., *Introduction to Mathematical Statistics*, Pearson, 2005, Sixth Edition.
- 2. Gupta S. C. and Kapoor V. K., *Fundamentals of Mathematical Statistics*, 11th Edition. Sultan Chand & Sons, 2014.
- 3. Fisz M., *Probability Theory and Mathematical Statistics*, 3rd Edition. John Wiley & Sons, 1967.
- 4. Gun A.M., Gupta, M.K. and Dasgupta B., Fundamentals of Statistics (Vol-I), World Press, 2013
- 5. Feller W., *An Introduction to Probability Theory and Its Applications (Vol-I)*, 3rd Edition. John Wiley & Sons, 2003.

MSM30	4-18		Function	nal Analy	ysis		L-4, T-1,	P-0	4 Cree	dits			
Pre-requi	isite: Re	al analysi	s and Lin	ear Alge	bra								
Course O	•			-	-	_		erstandin	g of fund	amental			
Course O	utcome	es: At the	end of the	e course,	the stude	nts will	be able t	0					
CO1	_	ain the function	ındament	al concep	ots of fur	nctional	analysis	and their	r role in	modern			
CO2	oper	ze the con ators, nor nematical	med space	ces, Hilb	ert space	s and t	o study	the behav					
CO3	spac	erstand an es includi h theorem	ng the Ha	ahn-Bana	ch theore	em, the	open map						
CO4	Undo detai	erstand the	e nature	of abstrac	ct mather	natics a	nd explo	re the co	ncepts in	further			
CO5	Expl	ain the co	ncept of	projection	n on Hilb	ert and	Banach s	paces.					
		Mapping	of cours	se outcon	nes with	the pro	gram ou	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	V	V	-	V	V	-	-	-	V	V			
CO2	V	V	V	V	V	-	-	-	√	V			
CO3	V	√	V	V	V	-	-	-	V	V			
CO4	$\sqrt{}$												
CO5	V	√	,	V	V	-	-	1	V	V			

Course Title: Functional Analysis

Course Code: MSM304-18

UNIT-I

Normed linear spaces, Banach spaces, properties of normed spaces, finite dimensional normed spaces and subspaces, linear operators, bounded and continuous linear operators, linear functionals, normed spaces of operators

UNIT-II

Equivalent norms, conjugate spaces, Reflexivity. Hahn-Banach theorems for real/complex vector spaces and normed spaces, Applications to bounded linear functionals on C [a,b].

UNIT-III

Uniform boundedness theorem, open mapping theorem, closed graph theorem, Projections on Banach spaces.

UNIT-IV

Inner product spaces, Hilbert spaces, properties of inner product spaces, orthogonal complements, orthonormal sets, Hilbert – adjoint operator, self-adjoint, unitary and normal operators, projections on Hilbert spaces.

- 1. Simmons, G.F., *Introduction to Topology and Modern Analysis*, 2008.
- 2. Rudin, W., Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill inc.,1991.
- 3. Kreyszig, E., *Introductory Functional Analysis with Applications*, John Wiley and Sons (Asia) Pvt. Ltd., 2006.
- 4. Bachman, G. and Narici, L., Functional Analysis, Dover, 2000.
- 5. Conway, J.B., A Course in Functional Analysis, 2nd Edition. Springer-Verlag, 2006.

MSM305-18	Mechanics-II	L-4, T-1, P-0	4 Credits
-----------	--------------	---------------	-----------

Pre-requi	isites: Li	near Alge	bra, Vec	tor Calcu	ılus and I	Basic Med	chanics							
Course O knowledg and the ba these con	e of Tens	ors and the	neir appli nin, stretc	cations. T	Γo make s ation and	students u the appli	ınderstan cations o	d the noti f tensors	on of cor in unders	ntinuum tanding				
Mathemat														
Course O	outcomes	: At the e	nd of the	e course,	the stude	nts will b	e able to							
CO1	Unde	rstand the	concept	of Tenso	or and the	ir proper	ties.							
CO2		rstand the		of co-ord	linate tra	nsformati	ions and	visualize	the tens	sor as a				
CO3		transforn		tions like	cummet	on conve	ention and	d comma	notation	s Also				
COS		nts shall l						i Comma	notation	s. A150,				
CO4		rstand co cations.	ontinuum	n hypoth	esis, spa	ntial an	material	co-ordi	nates an	d their				
CO5		rstand the ledge in s	-						-	ply the				
	ı	Mapping	of cour	se outco	mes with	the prog	gram out	comes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1	V	-	V	√	√	-	-	-	V	V				
CO2	$\sqrt{}$	-	√	√	√	-	-	-	V	V				
CO3	V	-	V	V	V	-	-	-	V	V				
CO4	V	N - N N N N N												
CO5	$\sqrt{}$	-	V	V	√	-	-	-	√	1				

Course Title: Mechanics-II
Course Code: MSM305-18

Unit I

Tensors: Introduction, Range and Summation Conventions, Free and dummy suffixes, results in vector algebra and matrix, the symbol δ_{ij} & ε_{ijk} , Coordinate transformations, cartesian tensors, Properties of tensors, Isotropic tensors, Isotropic tensor of order four, Tensors as linear operators, Transpose of a tensor.

Unit II

Tensor Continued: Symmetric and skew tensors, Dual vector of a skew tensor, Invariants of a tensor, Deviatoric tensors, Eigenvalues and eigenvectors, Polar decomposition

Unit III

Scalar, vector and tensor functions, Comma notation, Gradient of a scalar, divergence and curl of a vector, Gradient of a vector, divergence and curl of a tensor, Integral theorems for vectors and tensors.

Unit IV

Continuum Hypothesis: Notation of a continuum, Configuration of a continuum, Mass and density, Descriptions of motion, Deformation: Material and special coordinates, Deformation gradient tensor, Stretch and rotation, Strain tensors, Strain-displacement relations, Infinitesimal strain tensor, Infinitesimal stretch and rotation, Compatibility conditions., Principal strains, Strain-deviator.

- 1. Jog, C.S., Foundations and Applications of Mechanics: Volume-I Continuum Mechanics. Narosa Publishing House, New delhi.
- 2. Chandrasekharaiah, D.S. and Lokenath, D., *Continuum Mechanics*, Academic Press, London (Prism Books Pvt. Ltd., Bangalore-India).

MSM40	1-18	I	Different	ial Geom	etry	I	L-4, T-1,	P-0	4 Cre	dits			
Pre-requi	isite: Bas	sic calcul	us and ve	ector calc	ulus								
Course O	•									-			
of differentia			as to dea	al with g	eometry	of curves	and spa	ces using	the met	chods of			
umerenna	ii caicuit	18.											
Course O	hitcomos	z. At the	and of the	e course	the stude	ntte will	he able to	•					
	utcomes	. At the t	on the	e course,	ine stude	iitts Wiii	de adie ic	,					
CO1		rstand the urfaces.	e basic co	oncepts a	nd result	s related	to space	curves, ta	angents,	normals			
CO2	Expla	ain the ge	ometry o	f differen	it types o	f curves a	and space	S.					
CO3	Expla	in the ph	ysical pr	operties o	of differe	nt curves	and spac	es.					
CO4		Explain the physical properties of different curves and spaces. Understand principal directions and curvatures, asymptotic lines and then apply their important theorems and results to study various properties of curves and surfaces.											
CO5	Utiliz	ze Geodes	sics, it's a	all related	l terms, p	roperties	and theo	rems.					
		Mapping	g of cour	se outco	mes with	the prog	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	$\sqrt{}$	V	-	1	V	-	-	-	V	V			
CO2	V	V	V	V	-	-	-	-	V	V			
CO3	V	-	V	√	√	-	√	-	V	√ V			
CO4	V	√	V	√	√	-	V	-	V	$\sqrt{}$			
CO5	$\sqrt{}$	√	√	√	√	-	√	-	V	√			

Course Title: Differential Geometry

Course Code: MSM401-18

Unit I

Theory of Space Curves: Tangent, principal normal, bi-normal, curvature and torsion. Serretfrenet formulae, Contact between curves and surfaces. Locus of centre of curvature, spherical curvature, Helices.

Unit II

Spherical indicatrix, Bertrand curves, surfaces, envelopes, edge of regression, developable surfaces, two fundamental forms.

Unit III

Curves on a surface, Conjugate Direction, Principle Directions, Lines of Curvature, Principal Curvatures, Asymptotic Lines. Theorem of Beltrami and Enneper, Mainardi- Codazzi equations.

Unit IV

Geodesics, Differential Equation of Geodesic, torsion of Geodesic, Geodesic Curvature, Clairaut's theorem, Gauss-Bonnet theorem, Joachimsthal's theorem, Geodesic Mapping, Tissot's theorem.

- 1. Weatherburn, C.E., *Differential Geometry of Three Dimensions*, Cambridge University Press, 2016.
- 2. Willmore, T.J., *Introduction to Differential Geometry*, Dover Publications Inc., United States, 2012.
- 3. Bansi Lal, Differential Geometry, 4th Edition. Atma Ram & Sons, India, 1976.

Elective Subjects

MSM	1501-18	Discrete	e Mathem	atics]	L-4, T-1, P-	0	4 Cred	lits
Pre-re	quisite: Se	et Theory,	Relations	, function	s.					
mathe motive conce	matical ar ate student	guments ts how to s aph theor	require in solve pract ry such a	learning tical probl as Trees,	many ma	thematic discrete	foundations s and comp mathematic Matching,	outer sci s. Also, i	ences cou in this cou	rses. To
Course	e Outcome	es: At the	end of the	e course, t	he student	s will be	able to			
CO1	construct	t mathema	atical argu	ments usi	ng logical	connecti	ves and qua	ntifiers.		
CO2		nd how la		Boolean	algebra ar	e used as	s tools and 1	mathema	tical mod	els in the
CO3	validate	the correc	tness of a	n argumer	nt using sta	atement a	and predicate	e calculu	IS.	
CO4			with some		liscrete str	ructures v	which include	de sets, r	elations, f	unctions,
CO5	understa	nd the cor	ncepts Plan	narity incl	uding Eul	er identit	y.			
CO6	discuss a	nd unders	stand the in	mportance	e of the co	ncepts M	latching's an	nd Colou	ırings'.	
		Map	ping of co	ourse out	comes wit	h the pro	ogram outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	✓	✓	✓	✓	✓	-	-	-	✓	✓
CO2	✓	✓	✓	✓	√	-	-	-	✓	✓
CO3	√	✓	✓	√	√	-	-	-	✓	✓
CO4	✓	✓	✓	√	✓	-	-	-	✓	√
CO5	√	√	√	√	√	-	-	-	√	√
CO6	√	√	✓	✓	✓	-	-	-	✓	✓
L	1		1	I	1	1	<u> </u>		1	1

Course Title: Discrete Mathematics Course Code: MSM501-18

Unit-I

Mathematical Logic: Basic logical operations, conditional and bi-conditional statements, tautologies, contradiction, predicate calculus.

Recursion and Recurrence Relations: Polynomial expressions, telescopic form, recursion theorem, closed form expression, generating function, solution of recurrence relation using generating function, recursion.

Unit-II

Lattices and Boolean Algebra: Introduction to Binary relations, equivalence relations and partitions, Partial order relations, Hasse diagram. Lattices as partially ordered sets, properties, lattices as algebraic systems, sub lattices. Boolean algebra as lattices, Boolean identities, sub-algebra, Boolean forms and their equivalence, Applications of Boolean algebra to circuit theory.

Unit-III

Graph Theory: Directed graphs, undirected graphs, paths, circuits, cycles, sub-graphs, induced Sub graphs, degree of vertex, connectivity, planner graph, complete, Eulerian paths and circuits, Trees and Coloring of the graph, Rooted tree, spanning trees, minimal spanning trees, Kruskal's algorithm. Chromatic number, four-color problem (statement only).

Unit-IV

Algebraic Structures: Review of groups, codes and group codes, encoders and decoders, hamming matrices, parity checks, decoding and error correction.

- 1. Tremblay, J.P. and Manohar, R.P., *Discrete Mathematics with Applications to Computer Science*, Tata McGraw Hill, 2008.
- 2. Ram, Babu, Discrete Mathematics, Pearson Education, 2007.
- 3. Harary, F., Graph Theory, Narosa, 1995
- 4. Anami, B.S and Madalli, V.S., Discrete Mathematics, University Press, 2016.
- 5. Liu, C.L, *Elements of Discrete Mathematics*, 3rd Edition, Tata McGraw Hill, 2008.
- 6. Grimaldi, R.P and Ramana, B.V., *Discrete and Combinatorial Mathematics-An Applied Introduction*, Pearson education, 5th Edition, 2004..

MSM	1502-18		Codi	ing Theor	ry	I	L-4, T-1, P-0)	4 Cred	its
Pre-rec	quisite: Li	near Alge	bra, Proba	ability the	eory			l		
we int	troduce the codes, T	e basic co	ncepts of	Coding 7	Theory su	ch as, Do	nsmission of uble Error- and Bose-C	Correct	ing B.C.I	H. code,
Course	e Outcome	es: At the	end of the	course, t	he student	s will be a	able to			
CO1	understa	nd the con	cept of M	aximum-	Likelihood	d Decodin	g and Syndi	rome De	ecoding.	
CO2	analyze l	Double Er	ror-Correc	cting B.C.	.H. code a	nd Finite	Fields Polyr	nomials.		
CO3	understa	nd Cyclic	Codes.							
CO4	study the	concept of	of Bose-C	haudhuri-	Hocqueng	them (B.C	C.H.) Codes	and We	ight Distri	butions.
CO5		out basic g, and deco				ding theo	ry like mat	trix enc	oding, po	lynomial
CO6	learn hov	w algebrai	c coding t	heory is a	pplicable	in real wo	orld problem	ıs.		
		Map	ping of co	ourse out	comes wit	h the pro	gram outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	✓	✓	✓	✓	✓	-	-	-	✓	✓
CO2	✓	√	√	✓	✓	-	-	-	✓	✓
CO3	√	✓	✓	√	√	-	-	-	√	√
CO4	√	✓	✓	√	√	-	-	-	√	√
CO5	√	✓	√	√	√	-	-	-	√	√
CO6	√	✓	✓	√	√		-	-	✓	✓
	1	1		1	1	I	<u> </u>		1	1

Course Title: Coding Theory
Course Code: MSM502-18

Unit-I

Introduction to Coding Theory: Code words, distance and weight function, Nearest-neighbour decoding principle, Error detection and correction, Matrix encoding techniques, Matrix codes, Group codes, decoding by coset leaders, Generator and parity check matrices, Syndrome decoding procedure, Dual codes.

Unit-II

Linear Codes: Linear codes, Matrix description of linear codes, Equivalence of linear codes, Minimum distance of linear codes, Dual code of a linear code, Weight distribution of the dual code of a binary linear code, Hamming codes.

Unit-III

BCH Codes: Polynomial codes, Finite fields, Minimal and primitive polynomials, Bose-Chaudhuri-Hocquenghem codes.

Unit-IV

Cyclic Codes: Cyclic codes, Algebraic description of cyclic codes, Check polynomial, BCH and Hamming codes as cyclic codes. Maximum distance separable codes, Necessary and sufficient conditions for MDS codes, Weight distribution of MDS codes, An existence problem, Reed-Solomon codes.

- 1. Vermani L R, Elements of Algebraic Coding Theory, Chapman and Hall, 1996.
- 2. Vera P., Introduction to the Theory of Error Correcting Codes, John Wiley and Sons, 1998.
- 3. Roman Steven, Coding and Information Theory, Springer Verlag, 1992.
- 4. Garrett Paul, The Mathematics of Coding Theory, Pearson Education, 2004.

MSM50	3-18		Operatio	ns Resea	arch]	L-4, T-1,	P-0	4 Cre	dits
Pre-requi	isite: Ba	asic Calcu	ılus, anal	ysis and l	inear alg	ebra		<u> </u>		
Course O							optimizat	ion techn	iques in	order to
get best				_				_		
programm			_	_		_	_			
constraine	_		_					_		
its physic problems.		iderations	and im	piementa	tion of (opumizai	ion algo	ritnms 10	or solvin	g these
Course O	Outcome	s: At the	end of the	e course,	the stude	nts will b	e able to			
CO1		y the kno								
		ts from a		_	=			_		
	1 0	ramming	-		-	-	em, ass	ignment	proble	m and
	unco	nstrained	and cons	trained p	robiems	etc.				
CO2	Form	nulate an o	optimizat	ion probl	em from	its physi	cal consid	leration.		
CO3	Selec	ct and im	plement	an appro	priate o	otimizatio	on techni	que keep	oing in r	nind its
	limit	ations in	order to s	olve a pa	rticular o	ptimizati	on proble	em.		
CO4	Unde	erstand th	eoretical	foundation	on and in	nplement	ation of	similar ty	ype optin	nization
		niques ava								
CO5	Cont	inue to	acquire l	knowledg	ge and s	kills of	optimiza	tion tech	niques t	hat are
	appro	opriate to	professio	onal activ	ities					
CO6	Exte	nd their k	nowledge	e of basic	c optimiz	ation tec	hniques t	o do inte	eresting 1	esearch
	work	on these	types of	optimiza	tion techr	niques.				
		Mapping	g of cour	se outco	mes with	the prog	gram out	comes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	√								√	✓
CO1	V	-	-	-	_	-	_	-	,	•
CO2	-	-	✓	-	-	-	-	-	✓	✓
CO3	✓	✓	-	-	-	-	-	-	✓	✓
- C - :										,
CO4	-	✓	-	-	-	-	-	-	√	~
CO5	-	-	-	-	-	-	✓	-	✓	✓
001										
CO6	-	-	-	_	✓	-	_	-	✓	_
		1			1				I	

Course Title: Operations Research

Course Code: MSM503-18

UNIT-I

Formulation of linear programming problem (LPP) -graphical method, Basic Feasible Solution, Extreme Points, Convex set, Convex linear combination, optimal solution of LPP using Simplex, Big-M and two-phase methods, Exceptional cases in LPP i.e., Infeasible, unbounded, alternate and degenerate solutions.

UNIT-II

General Primal-Dual pair, Formulating a dual problem, Weak and strong duality theorems, Complementary slackness theorem, Dual simplex method, Economic interpretation of primal-Dual problems. Sensitivity analysis: change in right hand side of constraints, change in the objective function and coefficient matrix addition and deletion of constraint and variables.

UNIT-III

Initial basic Feasible solution of transportation problem, Balanced and unbalanced transportation problems, Optimal solutions of transportation problem using U-V /MODI methods, Assignment problems; Mathematical formulation of assignment problem, typical assignment problem, the traveling salesman problem, Test for optimality, degeneracy, Project management with critical path method.

UNIT-IV

Concept of convexity and concavity, Maxima and minima of convex functions, Single and multivariate unconstrained problems, constrained programming problems, Kuhn-Tucker conditions for constrained programming problems, Quadratic programming, Wolfe's method.

- 1. Taha, H.A., Operations Research-An Introduction, PHI, 2007.
- 2. Kanti Swarup, Gupta, P.K. and Man Mohan, *Operations Research*, Sultan Chand & Sons, Ninth Edition, 2002.
- 3. Hillier, F.S. and Lieberman, G.J., *Operations Research, Second Edition*, Holden-Day Inc, USA, 1974.
- 4. Bazaraa, M.S., Sherali, H.D., Shetty, C.M., *Nonlinear Programming: Theory and Algorithms*, John Wiley and Sons, 1993.
- 5. Chandra, S., Jayadeva, and Mehra, A., *Numerical Optimization and Applications*, Narosa Publishing House, 2013.

MSN	1504-18	A	dvanced	Number	Theory		L-4, T-1, P-	0	4 Cred	its
Pre-rec	quisite: El	ementary	Number T	Cheory				<u> </u>		
Compo identity applica	sitions. In , Gollnitz-	this cours Gordon io , the weak	se we introdentities, land stron	oduce the Rogers-Rang version	concepts amanujan as of vario	of variou type ider us import	rstand the as identities notities for notant theorem	like Jaco -colour p	obi's triple	e product
CO1	understar	nd the diff	erent type	s of partit	ions & co	mposition	ns.			
CO2	students	will have a	a working	knowledg	ge of the v	arious ty	pes of ident	ities		
CO3	work with	_	nce's, solv	e congrue	ence equat	ions and	systems of e	quations	with one	and more
CO4	be literate	e in the la	nguage ar	nd notation	n of numb	er theory				
CO5	understar	nd the con	cept of for	r n-colour	partitions					
		Map	ping of co	ourse outo	comes wit	h the pro	ogram outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	√	✓	✓	✓	✓	-	-	-	✓	✓
CO2	✓	√	✓	✓	√	-	-	-	√	√
CO3	√	✓	✓	√	√	-	-	-	√	√
CO4	√	√	√	√	√	-	-	-	√	√
CO5	√	√	✓	✓	√	-	-	-	√	✓

Course Title: Advanced Number Theory

Course Code: MSM504-18

UNIT-I

Partitions, Compositions, Ferrers graphs, Jacobi's triple product identity, Congruence properties of p(n), Rogers-Ramanujan identities, Basic hypergeometric series, q-binomial theorem, Sylvester's theorem (Statement only), Heine's transformation (Statement only).

UNIT-II

Restricted partitions, q-Gauss theorem, Gaussian polynomials, Bailey's lemma (weak version) (Statement only), Rogers lemma, q-Saalschutz's theorem (Statement only), Finite version of q-Saalschutz's theorem.

UNIT-III

Schur's theorem, Gollnitz-Gordon identities, Generalization and various analogues of Rogers-Ramanujan identities, Bailey's lemma (strong version) (Statement only), Watson's q-analogue of Whipple's theorem (Statement only) and its applications in deriving Rogers-Ramanujan identities and Gollnitz-Gordon identities.

UNIT-IV

Rank & Crank of a partition, n-colour partitions, Conjugate and self-conjugate n-colour partitions, Restricted n-colour partitions, Rogers-Ramanujan type identities for n-colour partitions.

- 1. Agarwal, A.K., Padmavathamma and Subbarao, M.V., *Partition Theory*, Atma Ram & Sons, Chandigarh, 2005.
- 2. Andrews, G.E., *The Theory of Partitions, Encyclopedia of Mathematics and its Applications* (Addison-Wesley), 1976, Re-issued: Cambridge University Press, Cambridge, 1988.
- 3. Gasper, G. and Rahman, M., *Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications*, Vol. 35, Cambridge University Press, Cambridge, 1990.
- 4. Agarwal, R.P., Resonance of Ramanujan Mathematics, Vol. 1 (New Age International), 1996.
- 5. Gupta, H., Selected Topics in Number Theory, ABACUS Press, 1980.
- 6. N.J. Fine, *Basic Hypergeometric Series and Applications*, Mathematical Surveys and Monographs, No. 27, American Mathematical Society, 1988.

MSM5	Advanced Complex Analysis L-4, T-1, P-0								4 Credi	its		
Pre-requ	uisite: Co	omplex An	alysis, Re	al Analys	is	I						
	x Analys			_			to understa		-	-		
Course (Outcome	es: At the e	end of the	course, th	e students	s will be a	ble to					
CO1	equip with necessary knowledge and skills to enable them handle mathematical operations, analyses and problem solving involving complex numbers.											
CO2	understa	anding of	topologica	al and geo	metric pro	perties of	the compl	ex plane				
CO3	analyze how complex numbers provide a satisfying extension of the real numbers											
CO4	learn techniques of complex analysis that make practical problems easy (e.g. graphical rotation and scaling as an example of complex multiplication);											
CO5	continu	e to develo	op proof t	echniques	S.							
		Марј	ping of co	urse outc	comes with	h the pro	gram outc	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	✓	✓	✓	✓	✓	-	-	-	√	✓		
CO2	✓	✓ ✓ ✓ ✓										
CO3	✓	✓	✓	✓	✓	-	-	-	√	√		
CO4	✓	✓								√		
CO5	✓	✓	✓	✓	✓	-	-	-	✓	√		

Course Title: Advanced Complex Analysis

Course Code: MSM505-18

Unit-I

Analytic continuation, Analytic continuation by power series method, Natural boundary, Schwarz reflection principle, Analytic continuation along a path, Monodromy theorem, Runge's theorem, simple connectedness, Mittag-Leffler's theorem.

Unit-II

Maximum principle, Schwarz's Lemma, Hadamard's three circle theorem, Phragmen-Lindelof theorem, Weierstrass factorization theorem, Factorization of sine function, Gamma function. Entire functions, Jensen's formula, the genus and order of an entire function, Hadamard factorization theorem.

Unit-III

Harmonic functions, Basic properties, Harmonic functions on a disc, Subharmonic and Superharmonic functions, The Dirichlet problem, Green's function.

Unit-IV

Normal families of analytic functions, Montel's theorem, Hurwitz's theorem, Riemann mapping theorem, Univalent function, Distortion and Growth theorem for the class of normalized univalent functions, Covering theorem, starlike functions, convex functions, Subordination principle.

- 1. Nihari, Z., Conformal Mapping, Conformal Mapping, McGraw-Hill, 1952.
- 2. Conway, J.B., Functions of One Complex Variable, Springer-Verlag, 1973
- 3. Gamelin, T.W., Complex Analysis, Springer, 2004.
- 4. Tutschke, W. and Vasudeva, H.L., An Introduction to Complex Analysis- Classical and Modern Approaches, Chapman & Hall/CRC, 2005
- 5. Copson, E.T., An Introduction to Theory of Functions of a Complex Variable.

Pre-requisite Course Ob implementati several possi programming	jective ion of ble so	es: This		ysis, linea	ar algebra	and one	rations re	search						
implementati several possi	ion of ble so		course	Pre-requisite: Basic Calculus, analysis, linear algebra and operations research.										
focus of this of and impleme	ntatio	lem, gan will be o n of optin	d optimi f differen ne theory n formula nization	zation tent problem y, dynam ation of retechnique	chniques ms viz. ac ic progra eal-world es for solv	in order dvanced amming phenoming ving thes	to get b linear pro and inver ena from e problen	est result grammin ntory mod its physic	ts from a g proble dels. The	a set of m, goal e major				
CO2	Form	ulate an c	ptimizati	ion probl	em from	its physi	cal consid	lerations.						
	Select and implement an appropriate optimization technique keeping in mind its limitations in order to solve a particular optimization problem.													
	Understand and analyze similar types of other optimization techniques available in the scientific literature.													
	Continue to acquire knowledge and skills of optimization techniques that are appropriate to professional activities.													
			_		-		echniques zation tec			eresting				
]	Mapping	g of cour	se outcor	nes with	the prog	gram out	comes						
F	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1	✓	-	-	-	-	-	-	-	✓	√				
CO2	-	-	✓	-	-	-	-	-	✓	✓				
CO3	✓							√						
CO4	-	✓	-	-	-	-	-	-	✓	✓				
CO5	-	-	-	-	-	-	√	-	√	√				
CO6	-	-	-	-	✓	-	-	-	✓	✓				

Course Title: Advanced Operations Research

Course Code: MSM506-18

Unit I

Advanced Linear Programming: Revised simplex method, Sensitivity analysis, Parametric programming, Integer programming branch and bond algorithm, Goal programming, Standard form of LGPP, Partitioning algorithm.

Unit II

Game Theory: Two-person zero sum games pure strategies (minmax and maximum principles), Game with saddle point, Mixed strategies: Game without saddle point, Rule of Dominance, Solution methods for games without saddle point: Graphical method, Linear programming method.

Unit III

Dynamic Programming: Characteristics of dynamic programming, Recursive relations, continuous and discrete cases, forward recursion, linear programming versus dynamic programming, Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.

Unit IV

Inventory Models: Deterministic models: Classic EOQ (Economic order quantity) models, EOQ with price brakes, Multi item EOQ with storage limitation, Dynamic EOQ models(b) Probabilistic models: Probabilistic EOQ models, Single period models and multiperiod models.

- 1. Taha, H.A., Operations Research- An introduction, 8th Edition, PHI, 2007.
- 2. Sharma, J.K, *Operation research: Theory & Applications*, 3rd Edition, Macmillan India, 2007.
- **3.** Kasana, H.S and Kumar K.D, *Introductory Operations Research: Theory & Applications*, Springer, 2005.
- 4. Pant, J.C, Introduction to Optimization and Operations Research, Jain Brothers, 2004.

MSM5	507-18	Ad	vanced F	luid Mec	hanics	L-	4, T-1, P-0		4 Credi	its
Pre-req	uisite: F	uid Mecha	nics and	Continuur	n Mechan	ics				
where the in research an approximation	ne studen rch proble eciation o	ts will be a	able to appoble to be able to	ply the tec s to provi- real worl	chniques u de the stud d problem	sed in der dent with as.	of advance riving arran	nge of im	portant re	sults and
CO1		tand the co ource, vorte	-	rotational	and irrota	tional flov	v, stream f	unctions,	velocity j	potential,
CO2		e simple fle Stoke's eq			flow betw	een parall	lel plates, f	low thro	ugh pipe	etc.) with
CO3	underst	and the ph	enomeno	n of flow s	separation	and boun	dary layer	theory		
CO4	underst	and the cor	cept of the	ermal cond	luctivity.					
CO5	learn ab	out the fun	damental	equations	of the flow	w and ene	rgy			
		Map	ping of co	ourse outo	comes wit	h the pro	gram outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	✓	-	✓	✓	✓	-	-	-	✓	✓
CO2	√	✓ - ✓ ✓ ✓ ✓								
CO3	√									√
CO4	✓	-	✓	√	√	-	-	-	√	√
CO5	√	-	√	√	√	-	-	-	√	√

Course Title: Advanced Fluid Mechanics

Course Code: MSM507-18

UNIT-I

Basic Concepts: Continuum Hypothesis, Viscosity, Most general motion of a fluid element, Rate of strain quadric, stress at a point, Tensor character of stress matrix, Symmetry of stress matrix, stress quadric, Stress in a fluid at rest, stress in a fluid in motion, Relation between stress and rate of strain components (Stoke's law of friction), Thermal conductivity, Generalized law of heat conduction, Fundamental equations of the flow of viscous fluids: Equation of state, equation of continuity - Conservation of mass, Equation of motion- Navier-Stoke's equations, Equation of energy-Conservation of energy, Symmetry of fundamental equations, Vorticity and circulation in a viscous incompressible fluid motion, (a) velocity transport equation, Circulation

UNIT-II

Dynamical similarity and Dynamical Analysis: Dynamical similarity, Reynold's law, Inspection analysis, Dimensional analysis, Buckingham π -theorem. Method of finding out the pi-products, Application of pi- theorem to viscous and compressible fluid. Physical importance of non-dimensional parameters. Reynolds number, Eckert Number, Froude Number, Mach Number, Pecklet Number, Grashoff Number, Prandtl Number, Brinkman Number, Nussel Number. Exact Solution of Navier-Stoke's equations of motion- Flow between parallel plates (Velocity and temperature distributions), (i) Plane Couette flows (ii) Plane Poiseulle Flow and (iii) Generalized Couette flow.

UNIT-III

Flow in a circular pipe (Hagen Poiseuille flow) -Velocity and temperature distribution, Flow through tubes of uniform cross section in the form of circle, annulus, ellipse and equilateral triangle under constant pressure gradient. Flow between two concentric rotating cylinders (Couette flow), Flow in convergent and divergent channels,

UNIT-IV

Steady incompressible flow with variable viscosity: Variable viscosity plane Couette flow and plane poiseulle flow. Unsteady incompressible flow with constant fluid properties: Flow due to a plane wall suddenly set in motion, flow due to an oscillating plane wall, starting flow in plane Couette motion, Starting flow in pipes, Plane coquette flow with transpiration cooling.

- 1. Bansal, J L, *Viscous Fluid Dynamics*, OXFORD & IBH Publishing Company Pvt. Ltd., New Delhi, 1992.
- 2. Chorlton, F., Textbook of Fluid Dynamics, C.B.S. Publishers, Delhi, 1985.
- 3. Schlichting, H., Boundary Layer Theory, McGraw Hill Book Company, New York, 1979.
- 4. Young, A. D., Boundary Layers, AIAA Education Series, Washington DC, 1989.
- 5. Yuan, S.W., Foundations of Fluid Mechanics, Prentice Hall of India Private Limited, New Delhi, 1976

MSM5	508-18	Ac	lvanced S	olid Mec	hanics	L-	4, T-1, P-0)	4 Credi	its		
Pre-req	uisite: M	[echanics-]	and Cont	tinuum M	echanics							
classica involves determin	l methods s (a) stat ne stresse	s and equi	p the stud s of a co and deform	lents with mponent nation due	the tools to find the to interna	necessary ne interna nl actions.	to solve in actions (mechanic	s problem	ns, which		
CO1	underst	and the the	eory of ela	sticity inc	luding str	ain/displa	cement and	d Hooke's	s law relat	ionships.		
CO2	analyze	analyze solid mechanics problems using classical methods and energy methods.										
CO3	solve fo	or stresses	and deflec	ctions of b	eams und	er unsymi	netrical loa	ading.				
CO4	obtain s	stresses an	d deflection	ons of bea	ms on ela	stic found	ations.					
CO5	solve to	orsion prob	olems in b	ars and th	in walled	members.						
		Map	ping of co	ourse outc	comes wit	h the pro	gram outc	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	√	-	√	√	√	-	-	-	-	√		
CO2	✓	✓ - ✓ ✓ ✓										
CO3	√	-	√	√	√	-	-	-	-	√		
CO4	√	✓ - ✓ ✓ ✓				-	-	-	-	√		
CO5	√	-	√	√	√	-	-	-	-	√		

Course Title: Advanced Solid Mechanics

Course Code: MSM508-18

Unit-I

Basics and Extension of Beams: Hooke's law, generalized Hooke's law, Elastic moduli and their relationship, strain-energy density function and its connection with Hooke's law, Saint-Venant's principle. Extension of beams: extension of beams by longitudinal forces, beam stretched by its own weight and bending of beams by terminal couples.

Unit-II

Torsion and flexure of beams: Torsion of a circular shaft, cylindrical bars, and elliptic cylinder. Stress function, conformal mapping, solution of torsion problem by conformal mapping. Flexure of beams by terminal loads, bending of rectangular beams.

Unit-III

Two-and Three-dimensional Problems: Plane deformation, plane stress, plane elastostatic problems, Airy's stress function, solution of the bi-harmonic equation, stress and displacement formulae basic problems of circular region: uniform pressure, uniform radial displacement and concentrated loads. Spherical shell under external and internal pressures.

Unit-IV

Thermoelastic problems and Variational Methods: Thermal stresses in spherical bodies, two-dimensional thermoelastic problems. Variational methods: Theorems of potential energy, minimum complementary energy, work and reciprocity, Ritz method for one- and two-dimensional problems and Galerkin's method. Kantorovich and Trefftz methods. Application of Treffz method.

- 1. Sokolnikoff, I.S., *Mathematical Theory of Elasticity*, TMH, New Delhi 1978.
- 2. Timoshenko.S. and Young D.H., *Elements of strength of materials Vol. I & Vol. II*, T. Van Nostrand Co-Inc Princeton, N.J., 1990.
- 3. Love, A.E.H, *A Treatise on the Mathematical theory of Elasticity*, Cambridge University Press, 1963.

MSM5	509-18	The	eory of Li	inear Ope	erators	L	4, T-1, P-0)	4 Credi	its		
Pre-req	uisite: R	eal Analys	is, Topolo	ogy, Integr	ral Equation	ons		I				
are nece	essary for	res: To tead a deeper umatical ph	ınderstand	ding of ma	any adjace	nt mather	natical fiel	-		-		
Course Outcomes: At the end of the course, the students will be able to												
CO1	1 have understanding of main topics of Banach Algebras and Spectral Theory.											
CO2	terminology, notation and the basic results and concepts of Banach and Hilbert spaces.											
CO3	understand the concept of spectrum and resolvent, adjoint operators, compact operators, self-adjoint and normal operators, Gelfand Representation, Riesz-Fredholm Theory.											
CO4	relation of the subject with other branches of mathematics (Fourier analysis, complex functions, differential equations)											
CO5		the studer re used.	its for reac	ling the lit	terature of	a wide var	riety of sub	ojects in v	vhich Hilb	ert space		
		Map	ping of co	ourse outo	comes with	h the pro	gram outc	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	✓	✓	-	✓	✓	-	-	-	-	✓		
CO2	✓	✓	-	√	✓	-	-	-	-	✓		
CO3	√	√	-	√	√	-	-	-	-	√		
CO4	√	✓	✓	✓	✓	-	-	-	-	√		
CO5	✓	✓	-	√	√	-	-	-	-	√		

Course Title: Theory of Linear Operators

Course Code: MSM509-18

Unit I

Spectral theory in normed linear spaces, resolvent set and spectrum, spectral properties of bounded linear operators. Properties of resolvent and spectrum. Spectral mapping theorem for polynomials.

Unit II

Elementary theory banach algebra, Spectral radius of a bounded linear operator on a complex banach space.

Unit III

General properties of compact linear operators. Spectral properties of compact linear operators on normed spaces. Behaviors of compact linear operators with respect to solvability of operator equations. Fredholm type theorems. Fredholm alternative theorem. Fredholm alternative for integral equations.

Unit IV

Spectral properties of bounded self-adjoint linear operators on a complex Hilbert space. Positive operators. Monotone Sequences theorem for bounded self-adjoint operators on a complex Hilbert space, Square roots of a positive operator.

- 1. Kreyszig E., *Introductory functional analysis with applications*, Johan-Wiley & Sons, New York, 1978.
- 2. Halmos P.R., *Introduction to Hilbert space and the theory of spectral multiplicity*, 2nd Edition. Chelsea Pub., Co., N.Y. 1957.
- 3. Dunford N. and Schwartz, J.T., *Linear operators-3 parts*, Inter-science Wiley, New York, 1958-71.
- 4. Bachman G. and Narici, L., Functional analysis, Academic Press, New York, 1998.

MSM51	0-18	Adva	nced Nu	merical	Methods]	L-4, T-1,	P-0	4 Cre	dits	
Pre-requ	isite: Ba	asic Calcu	ılus and a	ınalysis. l	Basic nur	nerical a	nalysis				
Course Co	ed nume al differe ng and ntation of	rical methential equesion economic numerical	ation arises etc.	olving dif sing in va The maj Is keeping	fferent typarious fie or focus g in mind	pes of pro ld of app will be advantag	oblems viz olications, e on dev ges & lim	z. linear s , for examely elopmen	ystems, omple in t, analy	ordinary science, sis and	
CO1	Apply the knowledge of advanced numerical methods in order to solve different types of problems viz. linear systems, ordinary and partial differential equation arising in various field of applications for example in science, engineering and economics etc.										
CO2	Unde	erstand ad	vantages	and limi	tations of	advance	d numerio	cal metho	ods.		
CO3		Select and implement an appropriate numerical method for solving a given problem keeping in mind nature of the problem.									
CO4	Use theoretical basis of these methods in order to study their counterparts existing in the scientific literature.										
CO5		-		_			nathemati olutions a				
CO6		nd their k methods	_	e to do r	esearch v	vork on	these met	hods and	l similar	type of	
	I	Mapping	g of cour	se outco	mes with	the pro	gram out	comes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	✓	-	-	-	_	-	-	-	✓	✓	
CO2	-	√	-	-	-	-	-	-	√	√	
CO3	√	√	-	-	-	-	-	-	√	√	
CO4	-	√	_	-	-	-	-	-	√	√	
CO5	-	-	-	√	-	-	-	-	✓	√	
CO6	-	-	-	-	✓	-	-	-	✓	√	

Course Title: Advanced Numerical Methods Course Code: MSM510-18

Unit-I

Iterative Methods for Linear Systems: The classical iterative methods (Jacobi, Gauss-Seidel and Successive Over Relaxation (SOR) methods), Krylov subspace methods; Conjugate gradient, Biconjugate-gradient (BiCG), BiCG stability methods, Preconditioning techniques, parallel implementations.

Unit-II

Finite Difference Methods: Explicit and implicit schemes, consistency, stability and convergence, Lax equivalence theorem, numerical solutions to elliptic, parabolic and hyperbolic partial differential equations.

Unit-III

Approximate methods of solution: Rayleigh-Ritz, collocation and Galerkin methods, properties of Galerkin approximations, Petrov-Galerkin method, Generalized Galerkin method.

Unit-IV

Finite Element Method (FEM): FEM for second order problems, One- and two-dimensional problems, The finite elements (elements with a triangular mesh and a rectangular mesh and three-dimensional finite elements), Fourth-order problems, Hermite families of elements, iso-parametric elements, numerical integration.

- **1.** Jain, M.K, Iyengar, S.R.K. and Jain, R.K., *Numerical Methods for Scientific and Engineering Computation*, 5th Edition, New Age international, 2008.
- 2. Hoffman Joe D., Numerical methods for Engineers and Scientists, McGrow-Hill, 1993.
- **3.** Atkinson, K.E, An Introduction to Numerical Analysis, 2nd Edition, John Wiley, 2004.
- 4. Gupta R.S., Elements of Numerical Analysis, McMillan India, 2009
- **5.** Seshu P., *Textbook of Finite Element Analysis*, Prentice Hall India, 2003.

MSM	511-18	To	pological	Vector S	Spaces	L	4, T-1, P-0		4 Credi	ts		
Pre-rec	quisite: L	inear Alge	bra, Real	Analysis,	Topology							
results connec particul	of the the ts topolog lar attention	ory of top	ological v gebraic str given to lo	rector spaructures. Tocally conv	ces (TVS) The main f vex spaces	ocus will s (e.g. nor	w of the moname sugge be the study med, seminor	sts, this of TVS	theory be over the	eautifully reals and		
CO1	understand the general theory of topological vector spaces.											
CO2	learn the basic properties of topological vector spaces.											
CO3	CO3 define the structure of locally-convex topological vector spaces.											
CO4	O4 understanding and analyzing inductive and projective limits.											
CO5	understa	nd the stru	cture of, F	Frechet spa	aces, Mon	tel, Schwa	artz, and nu	clear spa	aces.			
		Map	ping of co	ourse outo	comes wit	h the pro	gram outco	mes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	✓	✓	√	✓	✓	-	-	-	✓	√		
CO2	√	✓ ✓ ✓ ✓										
CO3	✓	✓	✓	✓	✓	-	-	-	√	✓		
CO4	✓	✓	✓	√	✓	-	-	-	✓	✓		
CO5	√	√	√	√	√	-	-	-	√	✓		

Course Title: Topological Vector Spaces Course Code: MSM511-18

Unit-I

Review of basic concepts of topological spaces and vector spaces. Prodect topological spaces, projection maps, compactness of prodect topological spaces-Tichonov's theorem.

Topological vector spaces (TVSs), examples of TVSs, Normed vector spaces as TVSs, Translation and multiplication maps, Neighborhood of 0, separated TVS, linear maps between TVSs, Bounded subsets of a topological vector space.

Unit-II

Locally convex topological spaces, normable and metrizable topological vector spaces, complete topological vector spaces

Unit-III

Frechet spaces, Uniform boundedness principle, open mapping and closed graph theorems for Frechet spaces.

Unit-IV

Banach-Alaoglu theorem, Variational inequalities, Lion-Stampacchia theory, Physical phenomenon represented by variational inequalities, points and external sets-Krein Miliman theorem.

- 1. Munkres J. R., *Topology A First Course*, Prentice-Hall of India, 1978.
- 2. Kelley, J.L., *Linear topological spaces*, Van Nostrand East West Press, New Delhi.
- 3. Wilansky A., Modern Methods in Topological Vector Spaces, McGraw Hill, 1978.
- 4. Simmons G. F., Introduction to Topology and Modern Analysis, McGraw-Hill, 1963.
- 5. Rudin W., Functional Analysis, 2nd Edition, McGraw Hill, 1973.

MSM5	512-18		Fraction	nal Calcul	lus	L-	4, T-1, P-0)	4 Credi	its	
Pre-req	uisite: D	ifferential	Equations	(Ordinar	y and Part	ial), Math	ematical N	Methods			
aptly ca fraction of fracti	lled the cal difference on al difference	alculus of ntial equati erential equ	derivative lons and co lations	es and inte onsider so	egrals to a me of thei	n arbitrary r applicati	ics of the y order. Thons. Also,	nen introd	uce the co	oncept of	
Course	Outcome	es: At the	end of the	course, tr	ie studens	t will be a	bie to				
CO1		and the Ri		ouville fr	actional ir	ntegral and	d evaluate	fractiona	l integrals	s of some	
CO2	define the Riemann-Liouville and Caputo fractional derivatives and find the fractional derivatives of some common functions										
CO3	state sufficient conditions under which the fractional integrals and derivatives exist										
CO4	investig	gate some	applicatio	ns of the f	Fractional	calculus to	the real w	vorld.			
CO5	solve li	near fracti	onal differ	ential equ	ations usi	ng the Lap	lace transf	orm and I	Fourier Tr	ansforms	
		Map	ping of co	ourse outc	comes wit	h the pro	gram outc	comes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	✓	-	✓		✓	-	-	-	-	✓	
CO2	√	✓ - ✓								✓	
CO3	√	-	√		√	-	-	-	-	✓	
CO4	√	-	√	√	√	-	-	-	-	√	
CO5	✓	-	√		√	-	-	-	-	√	

Course Title: Fractional Calculus

Course Code: MSM512-18

L	T	P
4	1	0

Unit-I

Special Functions of the Fractional Calculus. Gamma Function. Mittag-Leffler function, Fractional Derivatives and Integrals. Grunwald-Letnikov Fractional Derivatives. Riemann Liouville Fractional Derivatives. Some Other Approaches.

Unit-II

Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation. Sequential Fractional Derivatives. Left and Right Fractional Derivatives. Properties of Fractional Derivatives. Laplace Transforms of Fractional Derivatives. Fourier Transforms of Fractional Derivatives. Mellin Transforms of Fractional Derivatives.

Unit-III

Linear Fractional Differential Equations. Fractional Differential Equation of a General Form. Existence and Uniqueness Theorem as a Method of Solution. Dependence of a Solution on Initial Conditions. The Laplace Transform Method. Standard Fractional Differential Equations. Sequential Fractional Differential Equations. Fractional Green's Function. Definition and Some Properties. One-Term Equation. Two Term Equation. Three-Term Equation. Four-Term Equation. General Case: n-term Equation.

Unit-IV

Other Methods for the Solution of Fractional-order Equations. The Mellin Transform Method. Power Series Method. Babenko's Symbolic Calculus Method. Method of Orthogonal Polynomials. Numerical Evaluation of Fractional Derivatives. Approximation of Fractional Derivatives. Order of Approximation. Computation of Coefficients. Higher-order Approximations.

- 1. Podlubny, I., *Matrix approach to discrete fractional calculus vol. 3*, Fractional Calculus and Applied Analysis, 2000.
- 2. Carpinteri A, Mainardi F, editors. *Fractals and fractional calculus in continuum mechanics*, New York, Springer-Verlag Wien, 1997.
- 3. Mandelbrot B.B., *The fractal geometry of nature*, New York, W. H. Freeman, 2000.
- 4. Miller K.S., Ross B., An introduction to the fractional calculus. New York, John Wiley, 1993.
- 5. Oldham KB, Spanier J., *The fractional calculus*, New York, Academic Press; 1974.